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INTRODUCTION 

The design of satisfactory supporting and expansion devices for 

highway bridges is a problem which has concerned bridge design engineers 

for many years. The problems associated with these devices have been 

emphasized by the large number of short span bridges required by the 

current expanded highway program of expressways and interstate highways. 

Bridge supporting devices which have been and are being used vary 

from elaborate roller nests to cast or welded rockers, self lubricating 

bronze plates, curved steel plates, flat steel plates, and simple neoprene 

rubber, fabreeka or oil impregnated asbestos pads. Floor expansion 

devices may vary from finger joints to,sliding plates, premolded joints 

elastomeric tubes, sponge rubber, cork, armored joints, or poured rubber 

or asphalt. Some bridges are constructed without any supporting or 

expansion devices whatsoever. 

There appear to be incongruities in existing bridge design practice 

as to the type of expansion and supporting device required. For example, 

bridges of equal length, number of spans and general type of construction 

may show almost any of the devices listed above, or no devices may be 

used. Also, practice seems to dictate that steel bridges employ the more 

expensive supporting devices such as rockers or roller nests, whereas, 

concrete bridges made up of precast units tend to utilize relatively 

inexpensive bearing pads. The cost of each type of device varies over a 

wide range, approaching 10 to 15% of the cost of the fabricated steel, for 

steel bridges, and is often a factor in selection of design. 

Field observations show that in many cases the supporting and 

expansion devices do not function as anticipated by the design engineer. 
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Common observations include "freezing" of supporting or expansion devices, 

abutments which have moved inward against the bridge superstructure, 

closed floor expansion devices, and inconsistencies of rocker movement. 

Several engineers have suggested that it may be possible to utilize 

more extensively the simpler and less expensive expansion and supporting 

devices used primarily for precast concrete bridges. Lower fabrication 

costs and reduction of future maintenance, resulting from simplification 

of design, indicated that further information concerning design of such 

devices would be valuable to bridge design engineers. Thus a research 

project was initiated at the Iowa Engineering Experiment Station, Iowa 

State University, Ames, Iowa, to investigate the requirements for and 

the behavior of bridge supporting and expansion devices. Deck type high

way bridges only were considered with emphasis on bridges of three or 

more spans, each 50 ft or longer. 

Scope of the Investigation 

The initial objectives of this Investigation were; (1) To review 

and make a field study of devices used for the support of bridge super

structures and for provision of floor expansion; (2) To analyze the 

forces or factors which influence the design and behavior of supporting 

devices and floor expansion systems; and (3) To ascertain the need for 

future research particularly on the problems of obtaining more economical 

and efficient supporting and expansion devices, and determining maximum 

allowable distance between such devices. The experimental portion was 

conducted to evaluate one of the possible simple and economical solutions 
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the problems observed in the initial portion. The investigation 

ported herein is divided into four major parts or phases as follows 

(1) A review of literature; 

(2) A survey by questionnaire of design practice of a number o£ 

state highway departments and consulting firms; 

(3) Field observation of existing bridges; and, 

(4) An experimental comparison of the dynamic behavior of rigid 

and elastomeric bearings. 
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REVIEW OF LITERATURE 

A review of available literature provides an insight to the many 

factors pertinent to the requirements for and the behavior of bridge 

supporting and expansion devices. Due to the diversity of these factors 

the references are grouped, as much as possible, for continuity and 

clarity. 

The problem of expansion and contraction of bridge structures has 

been recognized for many years. Field observation or a study of bridge 

designs and specifications of bridges built during the last 30 or 40 

years reveals a pattern or "evolution" of various devices in an attempt 

to successfully cope with this problem. The fact that no satisfactory 

and economical solution has been found is emphasized by the variety of 

devices still used. 

The design engineer is responsible for the most suitable and 

economical design of a structure (24). However, economical design is 

dependent not only upon sound engineering theory but also upon the 

equally important and more elusive thing called engineering judgment 

or experience; especially in constructional procedure. For example, 

the cost of additional flange splices for some "least weight" designs 

for short span bridges has exceeded the amount "saved" by reduction in 

the amount of steel (36)o One booklet reviews recent progress in the 

design of short, span steel bridges which will permit bridge design 

engineers to achieve more economy in bridge constructionr Possible 

weight savings are given for some of the suggestions (2). 

Various articles have appeared in engineering publications which 

urge the consideration of more economical design practice successfully 
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used in other countries. One such article reports that in some foreign 

countries bridges are designed for nonuniform temperature distribution, 

which is associated with smaller movements than those resulting from an 

assumption of constant temperature (51). 

Design Specifications 

A review of bridge design specifications shows differences and 

changes of opinions for provision of contraction and expansion. It would 

appear that perhaps many of the first highway bridge design engineers 

were former railway engineers and that some of the early specifications 

for highway bridges were a continuation of railway practice. 

The oldest specifications found were those of the Iowa State Highway 

Commission, Series of 1925, of which the following is pertinent to this 

investigation (30); 

28. Temperature. (Section 4 - Loads) 
All fixed masonry arch spans shall be designed for a 

maximum temperature range of forty (40) degrees F. above 
and forty (40) degrees F. below the temperature at time of 
construction. All fixed steel arches shall be designed for 
a temperature range of one hundred fifty (150) degrees F. 

51. Expansion Joints. (Section 8 - Concrete Design) 
Provision for expansion and contraction to the extent 

of one-eighth (1/8) inch for each ten (10) feet of span, 
shall be made for all concrete bridges. 

(Note: The 1/8 inch provision is total, i.e., 
+ 1/16 inch.) 

95. Expansion. (Section 9 - Structural Steel Design) 
Provision for expansion and contraction to the extent 

of one-eighth (1/8) inch for each ten (10) feet of span, 
shall be made for all bridges. Expansion ends shall be 
firmly secured against lifting or lateral movement. 

(Note: The l/S inch provision is total, i.e., 1/16 
inch expansion and 1/16 inch contraction.) 
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96. Expansion Bearings. 
Spans of less than seventy (70) feet shall be arranged 

to slide upon metal plates with smooth surfaces, the coefficient 
of friction being assumed as one-fifth, (1/5). Spans of 
seventy (70) feet and over shall be provided with rollers or 
rockers, or with special sliding bearings as provided in Par. 
lOO, Div. V. Neither rollers nor rockers shall be used for 
expansion bearings at the top of trestle posts. 

The American Association of State Highway Officials (AASHO) began 

compiling standard bridge specifications in 1921. The specifications were 

available for several years in mimeograph form and the first printed 

edition was in 1931. Revisions were made in 1935, 1941, 1944, 1949, 1953, 

1957, and 1961. The following specifications are from the 1961 edition 

1. 2. 15.—THERMAL FORCES. 
Provision shall be made for stresses or movements resulting 

from variations in temperature. The rise and fall in temp
erature shall be fixed for the locality in which the structure 
is to be constructed and shall be figured from an assumed 
temperature at the time of erection. Due consideration shall 
be given to the lag between air temperature and the interior 
temperature of massive concrete members or structures. 

The range of temperature shall generally be as follows: 
Metal Structures 

1. 6. 46 .—EXPANSION AND CONTRACTION. (Structural Steel Design.) 
The design shall be such as to allow for total thermal 

movement at the rate of 1% inches in 100 feet. Provision shall 
be made for changes in length of span resulting from live load 
stresses. In spans more than 300 feet long, allowance shall 
be made for expansion and contraction in the floor. The 
expansion end shall be secured against lateral movement. 

1. 6. 47.—EXPANSION BEARINGS, (Structural Steel Design.) 
Spans of less than 50 feet may be arranged to slide 

upon metal plates with smooth surfaces and no provisions 
for deflection of the spans need be made. Spans of 50 feet 
and greater shall be provided with rollers, rockers, or 

(1)  .  

Moderate climate, from 0° to 120° F. 
Cold climate, from -30° to 120° F. 

Concrete Structures Temperature 
rise 
30° F. 
35° F. 

Temperature 
fall 

40° F. 
45° F. 

Moderate climate 
Cold climate 
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sliding plates for expansion purposes and shall also be 
provided with a type of bearing employing a hinge, curved 
bearing plates, or pin arrangement for deflection purposes. 

In lieu of the above requirements elastomeric bearing 
pads may be used for spans of 80 feet or less, subject to 
the following: 

(a) The relationship between the loaded face and the 
side areas expressed as a "Shape Factor". For rectangular-
shaped bearings with parallel (not over approximately 5° 
slope) loading surfaces 

2t(a+b) 
where 

S = shape factor 
a and b = length and width 

t = thickness 

(b) The total of the positive and negative movements 
caused by anticipated temperature change shall not exceed 
one-half the thickness of the pad. 

(c) Unit pressure on elastomeric bearing pads shall 
not exceed 500 psi under dead load nor 800 psi under a 
combination of dead load plus live load plus impact. The 
initial deflection under dead, live, and impact loads shall 
not exceed 15 percent of the thickness of the pad. 

Elastomeric bearing pads shall be cast in a single 
integral layer except that multiple-layer pads, separated 
by nonelastic sheets to restrain deformation in thick pads, 
may be permitted. The variation in thickness in the longi
tudinal direction (taper) shall not exceed five percent of 
the length of the pad. The least horizontal dimension of 
the pad shall not be less than five times the thickness 
(shape factor 1.25 minimum). 

(d) The physical properties of the pads shall conform 
to the following specifications; 

The pads shall be of the compound known as neoprene, 
shall be cast in molds under pressure and heat. Compositions 
for pads shall meet the requirements listed. Test specimens 

shall be in accordance with ASTM Method D 15, Part B. 

Physical Properties 

Grade (Durometer) 60 70 
Original Physical Properties 

Hardness ASTM D 676 60 + 5 70 + 5 

Tensile strength, minimum psi ASTM D-412 . . . 2,500 2,500 
Elongation at break, minimum percent 350 300 

Accelerated Tests to Determine Long-Term Aging Characteristics 
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Oven Aged—70 Hrs./212° F. , ASTM D-573 

Hardness, points change, maximum. ..... 0 to 4- 15 0 to + 15 
Tensile strength, "L change, maximum .... + 15 + 15 
Elongation at break, % change maximum ... — 40 — 40 

Ozone — 1 PPM in Air by Volume — 20% Strain—100 + 2° F.— 
ASTM D-II49I 

100 hours No cracks No cracks 
Compression Set—22 Hrs./158° F., ASTM D-395—Method B 

% Maximum 25 25 
Low Temperature Stiffness—ASTM D-797 

At—40° F., Young's Modulus, maximum psi. . 10,000 10,000 
Tear Test—ASTM D-624—Die "C" 

Pounds/lin. in., minimum 250 225 

1.6. 64.—EXPANSION JOINTS. (Floor System.) 
To provide for expansion and contraction movement, 

floor expansion joints shall be provided at the expansion 
ends of all spans and at other points where they may be 
necessary. 

Apron plates, when used, shall be designed to bridge the 
joint and to prevent, so far as practicable, the accumulation 
of roadway debris upon the bridge seats. Preferably, they 
shall be connected rigidly to the end floor beam. 

1. 7. 3 .—EXPANSION. (Concrete Design.) 
In general, provision for temperature changes shall be 

made in all simple spans having a clear length in excess of 
40 feet. 

In continuous bridges, provision shall be made in the 
design to resist thermal stresses induced or means shall be 
provided for movement caused by temperature changes. 

Expansion not otherwise provided for shall be provided 
by means of hinged columns, rockers, sliding plates or other 
devices. 

The German Federal Specifications include the following^: 

DIN 1073 Jan. 1941 - Computations for Steel Highway Bridges. 

For determination of stresses in statically indeterminate 
bridge systems: 

(a) Uniform increase of temperature At = + 35° C. 
(+ 63° F.) with an initial temperature of 10° C. 
(50° F.). 

^Samples to be solvent wiped before test to remove any traces of 
surface impurities. 

^John G. Hotchkiss, Senior Regional Engineer, AISC, New York, N. Y. 
Sections of the German Federal Specifications. Private communication. 
1961. 
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(b) Non-uniform increase of temperature across the height 
of the cross-section At = + 15° C. (+ 27° F.). 
(Under special conditions the stress due to non
uniform increase in temperature may be ignored. The 

change in length of the bridge, for determination of 
expansion bearings, for uniform increase in 
temperature, At = + 35° C.). 

PROPOSED REVISION TO DIN 1073 (refer to items (a) and (b) above) 

(a) At = + 20° C. (+ 36° F.) (steel uniform) 

(b) At = + 5° C. (+ 9° F.) (steel non-uniform) 

DIN 1072, 1952 - Loading Assumptions for Concrete Highway and 
Road Bridges 

(a) At = + 15-20 C. (+ 27-36° F.) from initial temperature 
of + 10° C. (+ 50° F.). (From initial temperature of 

+ 10° C. for structures with a least dimension of /O era. 
(27.6 in.). If sheltered from excessive temperature 
variations, the temperature may be decreased by 5° C.) 

(b) Non-uniform increase of temperature is only considered 
for special conditions, such as the tie rod in a 
2-hinged arch. In this case At = + 5° C. 

Standard Specifications for Steel Highway Bridges as published by the 

Canadian Engineering Standards Association (CESA), 1938, require the 

following (10): 

Temperature 58. 

Provision shall be made for temperature stresses due 
to an extreme variation of 160 degrees Fahrenheit, with a 
normal temperature of 60 degrees and a range from 40 degrees 
below zero to 120 degrees above. 

Expansion 163. 
Provision for expansion, to the extent of one inch for all 

bridges. Spans of less than 100 feet may be arranged to slide 
upon steel plates with smooth surfaces; but spans of 100 feet 
and over shall be provided with turned rollers or rockers, or 
with special sliding bearings, as described below. 

Bridge Manual, 1956 edition, includes the following specifications 

for New Zealand (42). 

3.2.18-Temperature and Shrinkage Loads, (Loads) 
Provision shall be made for stresses or movements 
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resulting from variations in temperature. The range of 

temperature to be considered should be;--
For metal structures + 30° F. (For special cases a larger 

For concrete structures + 20° F. 
For concrete decks on 

steel girders + 30° F. 

range may be advisable.) 

The coefficient of expansion of concrete may be taken 
as 0.000006. 

Shrinkage stresses in concrete shall be calculated as 
the equivalent temperature stresses resulting from a 
temperature change of —30° F. (For simplicity an overall 
coefficient of 0.0002 may be used.) 

3.6.46o -- Base Plates (or Sole Plates). (Structural Steel Design) 

Base plates on plate girders should have a thickness 
not less than 3/4 inch and not less than the thickness of 
the flange angles plus 1/8 inch. Base plates should be so 
designed that under extreme earthquake there are preventers 
to restrict relative movement between base plate and bed 
plate. 

3.7.1. -- General Assumptions. (Concrete Design) 
(13) Piers of bents constructed integrally with footings 

placed on a skew exceeding 10° should be considered fixed at 
the top of the footing. 

In assessing shrinkage and temperature effects and in 
designing girder sections for negative moment for structures 
having heavy skew, the increased stiffness of skewed piers 
should be taken into account. A check calculation should be 
run using the moments of inertia for piers about axes square 
to the roadway. The conditions of fixity resulting from this 
check should be used for assessment of stress for shrinkage, 
temperature or negative moment in girders. 

3.7.5. -- Expansion. (Concrete Design) 

In general, provision for temperature changes shall be 

made in all simple spans having a clear length in excess of 
40 feet. These provisions may either be by providing freedom 
to move or by providing strength which can safely resist 
induced stress. 

In continuous bridges, provision shall be made in the 
design to resist thermal stresses induced or means shall be 
provided for movement caused by temperature changes. 

Expansion not otherwise provided for shall be provided 
by means of hinged columns, rockers, sliding plates or other 
devices. The simpler these mechanisms can be made the better. 

,3.10.8. -- Stresses Due to Shrinkage of Slab. (Composite Beams) 
These are additive to normal stresses due to vertical 

loadings and must be taken into account. Plastic flow may be 
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considered to relieve these stresses a certain amount; 

this may be taken into account by taking the coefficient 
of contraction as 2X10^^. 

Although railway bridges are generally of different type deck con

struction, the American Railway Engineering Association General 

Specifications for Steel Railway Bridges are of interest in this 

investigation. The 1931 and 1947 revisions were available. The 1931 

revision (4) is for fixed spans less than 300 feet in length and the 

1947 edition (5) applies to fixed spans less than 400 feet in length. 

From the 1947 edition: 

Types of Bridges (I General Features of Design) 
102. The preferred types of bridges are as follows: 

Rolled beams for spans up to 50 ft. 
Plate girders for spans up to 125 ft. 
Riveted trusses for spans 100 ft or longer. 
Pin-connected trusses for spans 300 ft or longer. 

Expansion (IV Details of Design) 
442. The design shall be such as to allow for the 

changes in length of the span, resulting from changes in 
temperature, at the rate of 1 in. in 100 ft. Provision 
shall be made for changes in length of the span resulting 
from live load stresses. In spans more than 300 ft long, 
allowance shall be made for expansion in the floor. 

End Bearings 
443. In spans more than 70 ft long, there shall be 

hinged bearings at both ends and rollers or rockers at the 
expansion end. Shorter spans shall be designed to slide on 
bearing with smooth surfaces. 

Bearings and ends of spans shall be secured against 
lateral movement. 

End bearings on masonry preferably shall be raised above 
the bridge seat by metal pedestals or bolsters. 

A comparison of AASHO and German Federal Specifications for temp

erature range and provision for total expansion are shown in Table 1, 
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Table 1. Comparison of AASHO and German specifications 

Total Temperature Total Expansion (in.) 
Special Range, °F per 100 ft 

Specification Conditions Steel Concrete Steel Concrete 

AASHO 1. 2. 15 Moderate Climate 120 70 0.94 0.55 

Cold Climate 150 80 1.17 0.62 

AASHO 1. 6. 46 (160) 1.25 

German Existing Exposed 126 72 0.98 0.56 

Sheltered 126 54 0.98 0.42 

German Proposed 72 0.56 

Expansion Range: Steel 0 .56 to 1.25 

Concrete 0 .42 to 0.62 

No basis for the lower temperature range in the German Proposed 

Specifications has been found. One investigator stated that the seasonal 

variations for Central European conditions would probably have a 

maximum of about + 15° C (+ 27° F) if uniform temperature distribution 

is assumed within each substance, steel and concrete, of a composite 

beam (48). 
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Thermal Expansion of Concrete and Steel 

Standard values for the coefficient of thermal expansion of concrete 

and steel are generally accepted as 6.0(10)"^ and 6.5(10)"^ per degree F 

respectively. This leads to the conclusion that the possibility of 

stresses due to difference between the thermal expansion of the two 

materials may be ignored. 

However, numerous tests have shown a wide range of values for concrete 

with different aggregates and proportions. Further, the coefficient of 

thermal expansion of concrete varies with temperature, humidity, moisture, 

method of curing, and amount of reinforcing steel. 

For temperatures of 200° F to 1100° F the coefficient of expansion 

for steel may be determined by means of a formula (3, p. 5-9). 

Among values given for the coefficient of thermal expansion of 

concrete with different aggregates are those by David and Meyerhof (13) 

for temperatures above 32° F, For gravel aggregates, coefficients of 

7.3(10)"^ and 6.8(10)"^ were found for air storage and wet storage 

respectively. For the nine types of aggregates tested the coefficients 

varied from 4.1(10)"^ to 7.3(10)-6 and 3.4(10)"^ to 6.8(10)"^ for air 

and wet storage respectively. 

Coefficients lower than the accepted value were found for both 

saturated and -oven dry conditions during the Michigan Road Test (39): 

Coefficients derived from these tests with specimens in 
a saturated condition for the temperature range between 32° 
and 130° F. averaged 0.0000053. In a saturated condition the 

specimens contained approximately 4.1 percent of absorbed 
moisture. The concrete in an oven-dry state gave a lower value 
of 0.0000049 for the coefficient of expansion. 
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On the basis of these data it was determined that for a 
temperature of 72° F. the average change in length of the 
specimens from a dry to a saturated state was 0.000246 inch 
per inch of length. This value is equivalent to a change in 
temperature of about 46° F. Assuming the same relative linear 
contraction of the specimen in all directions, the change in 
volume from saturated to dry state was 0.075 per cent which 
agrees closely with the results of Davis (2)* for concrete with 
gravel aggregate. According to Davis, subsequent saturation 
produces an increase in volume of only about one-tenth of the 
original contraction for this type of concrete. 

Measurements of the coefficient of thermal expansion of different 

aggregates (British rocks) and of concretes prepared from them with 

different cements were made over the temperature range 32° F to 104° F 

by Bonnel and Harper (7). The resultant values show general agreement 

with other investigators, but disagreement as to the effect of curing 

and water content. Their research indicates: 

The age of concrete has little effect on its thermal 
expansion. 

The thermal expansion of desiccated and water-saturated 
concretes are identical, and concretes in conditions between 
these two extremes have higher expansions. 

For structural members not exposed to the weather... 
drying-shrinkage will normally be greater in magnitude than 
any subsequent thermal movement. Exceptions to this are to 
be found in flat concrete roof-slabs covered by dark 
bituminous roofing materials where, because of the high 
absorption of heat from the sun's rays, the rise within the 
slab can be considerable. 

In structures exposed to the weather, wetting and 
drying movements will be superimposed on the thermal move
ments but, whereas the latter are both diurnal and seasonal, 
the former are mainly seasonal. Since, however, an increase 
in temperature will usually be associated with some degree 
of drying, the net movement will be less than that calculated 
from the thermal expansion. 

Walker, Bloem, and Mullen (64) also found that coefficients of 

expansion for saturated and oven-dry conditions are similar while those 

for a partially dry condition are considerably higher. 

''^Davis (14, p. 677). 
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Tests of thermal contraction and expansion of concrete show a 

variation with temperature. Values for 8 in. by 10 in. by 3 ft specimens 

with gravel aggregate are given by Chow (12). Some of his general con-

clusions were : 

The thermal coefficient of concrete during a freezing 
cycle is less than that observed during a thawing cycle. 

The coefficient of thermal contraction and expansion 
varies with the temperature. The coefficients have smaller 
values than the one commonly acceptcd. The average co
efficient of thermal contraction of concrete made of lime
stone or gravel aggregate is equal to 55% or 70% respectively 
of the value for carbon steel which is 0.0000065 per degree 
F. 

A certain amount of "residual expansion" appears at the 
end of a complete cycle of freezing and thawing. 

Valore (63) reported that residual expansion for repeated cycles of 

freezing and thawing are cumulative. 

The thermal coefficient of expansion of concrete was reported by Hatt 

(27) to vary from 4.0(10)-* at 65° F to 6.0(10)-* at 140° F. 

Strom (60) reports that when a pavement is covered with asphalt the 

expansion of the pavement is cut down to a great degree. He refers to 

limited tests made on two 7-in. pavement slabs, one exposed and the other 

having a 3-in. bituminous concrete. The maximum temperature difference 

between thermocouples set at the top surface of the concrete and 1 in. 

above the bottom surface was 22° F for the exposed slab and 14° F for the 

surfaced slab. The temperature of the surfaced slab was about 64% of that 

of the exposed slab and would reduce the expansion of the slab to a 

considerable extent. 

Numerous articles such as one by Mercer (37) report concrete failures 

resulting from a difference in thermal expansion of the aggregate and 
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cement. Erickson and Van Eenaia (19) state that if concrete with expansive 

characteristics must be used, composite design should be used with 

caution. 

Concrete Expansion and Growth 

Concrete growth may be due to either chemical or physical causes. The 

problem of concrete growth has been the subject of extensive field and 

laboratory work. Chemical causes, especially those due to alkali reaction, 

were not considered in this investigation as many states have discontinued 

the use of high alkali cements and deleterious aggregates. 

Physical causes of concrete growth include freezing-thawing, wetting-

drying, and heating-cooling. The variation of the thermal coefficient of 

expansion of concrete with temperature was found by Chow (12) to result 

in growth at the end of a cycle of cooling and warming. The same 

investigation showed a definite growth due to alternate wetting and drying. 

Old specimens of concrete which have been exposed to conditions of freezing 

and thawing were found to have the tendency to grow more than newly 

prepared specimens. Specimens with reinforcing steel showed a smaller 

change in length due to a change in moisture conditions of the concrete 

than those without steel. 

Growth due to moisture does not require visible wetting, but is also 

influenced by humidity of the air. David and Meyerhof (13) report that 

concrete growth will produce stresses in composite bridges similar to 

those produced by differences in thermal expansion coefficients of steel 

and concrete at low temperatures. Davis (15) reported that for thoroughly 

dried concrete bars, air of high relative humidity has been found to be 
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nearly as effective in producing expansions as is the immersion in water. 

Lea and Davey (33) state that the drying shrinkage and reversible wetting 

movement of concrete are of the same order as the seasonal thermal movement, 

approximately % in. in 100 ft. Mercer (38) reported that a paper presented 

by Professor A. H. White in 1915 contained the information that a small bar 

cut from a sidewalk after 20 years' service elongated 0.175 per cent by 

successive immersions at room temperature, and successive long immersions 

% 

with intermediate dry periods caused progressive expansion far greater 

than changes due to temperature. Mercer also warned against consideration 

of moisture change as an equivalent thermal change since the influence 

upon the structure through the thermal coefficient can be vastly different 

from the effects of permeability and moisture movement. 

Differential Temperature 

Although the thermal coefficients of expansion of concrete and steel 

are considered approximately equal, other factors are involved in the 

calculation of thermal stresses and movement. 

The horizontal deck of the bridge is exposed to solar radiation to 

a different degree than a vertical member, say a pier or abutment. Also, 

portions of the bridge are exposed to direct sunlight while others are 

entirely shaded. Further, the superstructure and substructure of a 

bridge over a stream are subjected to different air and solar effects 

than those of a bridge over a highway. 

Movement and stresses are also influenced by such factors as time-

lag between the change in temperature and flow of heat, thermal resistance 

and capacitance and color. Article 1. 2. 15 of the 1961 AASHO 
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Specifications (1) states "Due consideration shall be given to the lag 

between air temperature and the interior temperature of massive concrete 

members or structures." No indication was found as to the background 

of the statement or what is meant by "massive." It also requires provision 

for a larger thermal movement for steel bridges than for concrete bridges. 

No background for this requirement could be found during this investigation 

other than, perhaps, temperature lag, since steel should reach a uniform 

temperature change more rapidly than a mass of concrete. 

Naruoka, Hirai and Yamaguti (41) measured the temperature distribution 

of an asphalt pavement covered concrete bridge slab with steel girders. 

The asphalt pavement was 50 mm thick and the concrete slab 150 mm thick. 

One steel girder was 900 mm deep, the other 1120 mm deep. The temperature 

was measured at 10 to 20 minute intervals from about 9 a.m. to 7 p.m. 

during two days in July, Highest temperatures in the concrete slab were 

reached at 4 p.m. Prior to that time, when apparently water was 

scattered on the asphalt, the surface temperature of the asphalt was high

er than that of the concrete. Interior temperatures of the concrete slab 

were not uniform and, in general, were higher than for the steel. 

From the above investigation, it would appear that a concrete bridge 

deck would undergo larger daily thermal movement than the steel girders. 

Also, for prolonged periodG of extreme heat or cold it would seem reason

able that concrete and oteel girders 'would experience similar magnitudes 

of oeaoonal movement, aeouming nearly equal coefficients of thermal 

expansion. 

Changes in strain and stress directly proportional to the air 

temperature (only) were observed by Reinitzhuber (48), 
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The maximum radiant heat per hour on a structure for any hour of the 

day may be obtained from handbooks. The diurnal variation is generally 

sinusodial, or nearly so, the period of oscillation depending upon 

several variables. Stephenson (59) reported that theoretical values of 

curvature and stress due to total restraint of tall slender columns 

subjected to solar radiation can be made if such factors as density, 

specific heat, thermal conductivity, absorptivity factor, surface 

resistance, coefficient of thermal expansion, modulus of elasticity of 

the concrete and latitude of the structure are known. 

Abutments, Piers, and Approach Slabs 

Among the forces acting upon piers and abutments are those generated 

by solar radiation, vertical and longitudinal traffic loads transmitted 

through the superstructure, and surcharge load of embankments and wheel 

loads. Many cases of abutment movement have resulted from grovjth of 

approach slabs, compaction and/or settlement of approach fill, or "freezing" 

of support or expansion devices. 

Longitudinal traffic loads are discussed by Erickson and Van Eenam 

(19) in an article on the application and development of AASHO 

Specifications to bridge design. 

Settlement of approach slabs and movement of abutments is accepted as 

commonplace. According to Peck and Ireland (47) these are due in many 

cases to improper compaction or use of improper material or constructional 

procedure. Approaches of a number of bridges in California have been 

studied by Jones (32). The investigation revealed that more approach 

patching was required for closed-abutment bridges than for open-end 
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structures. This was believed due largely to better compaction of the 

approach fill for open-end structures by construction equipment and 

consolidation of the underlying ground by the weight of the approach fill, 

usually completed before the bridges are built. Little difference was 

found in the amount of approach surface patching for structures on piles 

as compared with those on spread footings. Although some settlement was 

often noted during the first year, approach patching generally was not 

needed until 2 or 3 years after the road was opened to traffic. Jones 

proposes several measures for reducing surface irregularities on bridge 

approaches. 

Examples of typical approach slab action are given by Strom (60): 

(1) One Highway Department investigated the expansion of concrete 

pavements and concluded that due to lack of reinforcing, 

the concrete pavement never came back to its original 

length after expanding. Hair cracks, formed during 

expansion, filled with dirt during rain, and the pave

ment became longer and longer. 

(2) In Arkansas, 3-in. slots were cut in the pavement about 

50 ft from the end of various bridges. The slot was fill

ed with a mixture of sawdust and asphalt and covered with 

3/4 in. of joint filler. Approximately three years later, 

the pavement had moved 2 or more inches and the sawdust and 

asphalt mixture was compressed so that sections could be 

lifted out like a board. Five-inch slots were then cut in 

these pavements. Abutment backwalls of bridges throughout 

the state have been broken by pavement movement. 
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(3) In another instance the pavement pushed the approach 

spans so that the bank pier of a 130-ft span -was 2-3/8 in. 

out of plumb. 

Strom reported that the expansion of the pavement is greatly reduced 

when the pavement is covered with asphalt. 

In an effort to eliminate settlement of approach slabs and excessive 

movement of abutments, which frequently results in broken abutment back-

walls or closing of expansion devices, many states are experimenting with 

granular backfills, predrilling for piling, and stub type abutments. 

Another apparent method would be the provision for a greater amount of 

movement in the expansion devices. However, it is also apparent that this 

method would only tend to delay rather than eliminate uhis source of 

trouble and could, in fact, result in an increase of abutment backwall 

failures. A better method proposed by Girten (24) would be to anticipate 

and forestall this type of failure by fixing the superstructure to 

flexible piers and stub abutments. In this case the girders are tied 

to the piers and abutments and only a single row of vertical piles is 

used in the abutments to support the vertical loads. This type of design 

has been used on bridges with a total length between abutments of 300 ft. 

Also, since there is no relative movement between the abutment and the road

way slab, no roadway expansion is provided. Instead, the roadway 

slab is carried across the top of the abutment to a mastic joint at the 

back face of the abutment. 

One of the bridges observed during the course of this investigation 

was constructed similar to the method outlined above. Constructed in 1934, 

the three span, 190 ft continuous steel beam bridge was fixed at all 
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points of support. A single row of vertical piling with concrete cap 

was used at the ends of the bridge with a separate retaining wall 

spaced 3/4 in. at 80° F from the end of the bridge. The concrete center 

piers rest upon two vertical rows of piling. No roadway expansion device 

other than mastic was used. The bridge was in very good condition and 

the designer* reported: 

The bridge was the first we had designed, whereby the 
piers and columns were deflected to take care of the expansion 
of the bridge. It has proven very satisfactory, since we have 
had no maintenance except an occasional painting of structural 
members. The bridge has been subject to the ravages of the 
Floyd River and the great increase of traffic over the past 
many years with no appreciable effect. 

One State Highway Department reported the use of this type of con

struction over a period of the past 15 years. 

Supporting and Expansion Devices 

Supporting devices 

Rockers and roller nests are among the oldest supporting devices 

used for provision of expansion of the superstructure. Originally used 

for truss bridges, their present use on deck type bridges is, to some 

extent, a "carry-over" from former usage. Corrosion and "freezing" of 

these devices is not unusual, especially for expansion lengths of less 

than 200 to 300 ft. 

Other types of supporting devices currently used include lubricated 

bronze plates, curved and flat steel plates, lubricated asbestos pads. 

C. T. Vanderwicken, Ass't. City Engineer, Sioux City, Iowa. Design 
details and subsequent behavior of a bridge. Private communication. 1961. 
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rubber J neoprene, Fabreeka pads, and Teflon-surfaced neoprene and 

Fabreeka pads. The cost of the various types of supporting devices varies 

over a considerably large range. Because of the variation in cost and 

the large number of devices sometimes used, the relative cost of support

ing devices to the overall structure is -worthy of consideration. One 3 

span bridge observed during this investigation had 36 rockers. 

Elastomeric pads 

The use of elastomeric pads is relatively new in the United States 

and has been used more extensively for prestressed concrete bridges than 

for steel bridges. However, elastomeric pads have been used in Europe 

for some time. The La Bourget bridge in France was constructed with some 

of the structural members resting on rubber pads. After 20 years the 

steelwork had nearly corroded away and extensive repairs were made. 

However, according to Bolton (6), the rubber pads were reported to be in 

such good condition that they were merely turned over and put back in 

place for another 20 years. 

The Pelham Bridge, Lincoln, England, has an overall length of 1470 

ft, a width of 68 ft, and was built on a horizontal curve (53). Reisser, 

Wright, and Bolton (49) describe the desigti and construction of this 

bridge which had 24 by 16 by 7-1/8-in. laminated rubber bearings over 

abutments and intermediate flexible steel portals. 

The use of elastomeric pads for highway bridges is discussed by Paxson 

(46); details concerning the use of neoprene bearing pads, curved steel 

plates, and lubricated bronze plates are given by Dean (16); and Graves 

(26) reported the first usage of a neoprene plate developed by the Texas 
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Highway Department Bridge Division to be used as a bearing material for 

precast, prestressed concrete beams. 

Evaluation tests have been made on elastomeric bridge bearings (35, 

44, 45); publications on the design of neoprene pads are available (17, 

23); and the use of elastomeric bearings for steel bridges is permitted 

by the 1961 AASHO Standard Specifications (1). 

Investigations have also been made on the use of elastomeric pads as 

bearings for steel beams. Fairbanks (21) conducted tests using 18WF50, 

24WF76, and 30WF108 steel beams and found a lower allowable value for 

shearing strain of neoprene pads than previous investigators. 

Other types of supporting devices 

Lubrite expansion plates were used to replace worn expansion roller 

nests under 15 pin connected railroad trusses with spans of approximately 

170 ft (56). It was reported that the use of slide plates at expansion 

ends of bridges is not unusual, but that their installation under steel 

spans more than 70 ft long is distinctly so. 

Some engineers believe that the use of less corrosive alloy steel 

will provide satisfactory behavior. Tests have been made of bridge 

bearing plates clad with a 0.0625 and 0.1250 in. thickness of stainless 

steel. It is reported that there was no damage to bond and shear strength 

of bonds was_not lowered after 2,000,000 passes, which is supposedly 

equal to 50 years' service (58). 

Interest is growing in the search for more economical and efficient 

supporting devices. One new material under investigation is Teflon. 

Molded Teflon is reported by Ricklin and Miller (50) to have a dry 
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coefficienc of friction with steel as low as 0.04. Rulun, a filled 

Teflon material, is being investigated as possible shaft bearings for 

some items of machinery. Teflon used with neoprene pads is under study 

for bridge bearings (43). Epoxide resin has been used for bridge support 

bearings (18). 

Fabreeka-TefIon pads are being used on several test bridges (20). 

These pads consist of 2 Fabreeka pads with filled Teflon a filled 

Tetrafluorethylene Fluorocarbon resin, commonly called filled TFE 

1/32 in. thick bonded to the bearing surface of each pad so that Teflon 

slides on Teflon. 

The coefficient of friction is reported to be 0.075 at 100 psi 

decreasing progressively to 0.047 at 1000 psi for sliding speed of 1 in. 

per min. 

No doubt other new materials will be advocated for possible use as 

bridge bearings. 

Expansion devices 

To allow movement of the deck slab some type of floor expansion 

device is used in conjunction with the supporting devices. Floor 

expansion devices vary from the complicated finger joints to sliding 

plates, some type of asphaltic fiberboard, asphaltic mastic, expanded 

neoprene fillers, sponge rubber, or open armored joints. As with 

supporting devices, the cost of these devices varies over an extremely 

wide range. In some cases suspended hanger arrangements have been used 

in the bridge beams in an effort to provide for possible longitudinal 

and vertical movement of the bridge, piers and abutments. Suspended 
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hanger arrangements usually use a larger number of floor expansion devices 

than other arrangements. 

In general, it seems to be desirable that the floor expansion device 

prevent the passage of water and debris which might fall upon the bearing 

seats. Various arrangements of water stops and gutters have been tried 

for this purpose. 

Finger joints, the most expensive of the steel devices currently in 

use, are generally used to accommodate relatively large horizontal move

ment. While they tend to provide a smooth, uninterrupted traffic surface, 

they usually do not prevent the passage of water and debris. Some gutters 

under finger joints were observed during the period of this research. 

The gutters observed were filled and debris had accumulated around the 

supporting devices. 

Most of the floor expansion devices currently used function unsatis

factorily in some respect. This is not unusual because floor expansion 

devices must accommodate not only the predicted movement of the super

structure but also the unpredicted movement of piers and abutments as 

well as growth of approach and bridge slabs. 

Infiltration of foreign matter in expansion joints is given by 

Russell (54) and Strom (60) as one cause of trouble in concrete bridge 

slabs that requires constant maintenance. 

In some cases, open expansion joints have proven to be the most 

satisfactory. Wright (65) reported the use of open expansion joints— 

only a gap left, no plates or other form of filler across the joint--

since the design engineers had experienced trouble with plates. The 

maximum gap was 3/4 in. and a gutter was provided. 



www.manaraa.com

27 

Since some types of filled joints do not return to their original 

dimensions after initial compaction, neoprene devices have been 

developed. One neoprene and steel device is 13^ in. wide and is reported 

to accept a movement of 3 in. (52). Another neoprene and steel load 

carrying type of bridge expansion device which accommodates a 3-in. 

travel has been used on a trial bridge^. 

C. H. Neff, The General Tire and Rubber Co., Industrial Products 
Div., Wabash, Indiana. Bridge expansion devices. Private communication. 
1965. 
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SURVEY OF DESIGN PRACTICE 

The second phase of the project was a survey by questionnaire of 

current bridge design practice. The questionnaire and letter shown in 

Appendix A were mailed to ten Bridge Engineers of State Highway Depart

ments and 13 consulting firms and engineers of the mid-central portion of 

the United States. Replies were received from nine of the Bridge Engineers 

and seven consulting firms or engineers. 

The response to the questionnaire indicated that bridge design 

engineers are concerned with and interested in the problems associated 

with bridge supporting and expansion devices. Many of the respondents 

also sent copies of standard details and plans of bridges. 

Due to the diversity of types of devices used and requirements for 

usage, no concise, graphical tabulation of current practice could be made. 

A summary tabulated in two groups, according to whether the reply was 

received from State Highway Departments or from consulting firms, is pre

sented in Appendix A. Each group is tabulated by question number for easy 

comparison and replies are identified alphabetically to provide some 

insight and continuity as to the overall design practice of each department 

or organization. Answers to Questions 1 and 2 are grouped according to 

type of supporting device and type of expansion device. 

Three of the consulting firms simply stated that their organization 

followed the design standards of the particular state involved, and, thus, 

there were no specific answers for tabulation. 

The answers to the questionnaire show interesting variations in present 

design procedure--especially since, as one Bridge Engineer indicated, all 

respondents are designing according to the AASHO Specifications. 

Typical devices used are shown in Figs. 17 and 18, Appendix B. 
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FIELD OBSERVATIONS 

The third phase of the research project consisted of field observation 

of the behavior of bridge supporting and expansion devices. Both steel 

and concrete deck type bridges were observed. Steel bridges included 

plate girder, I-beam, and WF-beam bridges. Concrete bridges included 

reinforced concrete girder, precast prestressed beam, and concrete box 

girder bridges. All bridges had a concrete roadway slab, and some had 

an asphalt wearing surface. The design of the bridges may or may not have 

been based on composite action. General limitations for observation were 

that the bridges should be of three or more spans, either simply supported 

or continuous. Span lengths were usually 50 ft or more. 

The following basic procedure was used to select at random bridges of 

various types and ages. A general area, usually within one day's auto 

travel of Ames, Iowa, was selected and all concrete and steel deck type 

bridges within the span limitation were observed in sequence. For areas 

removed from Ames, the same general procedure was followed. For example, 

bridges were observed in sequence on U. S. Highway 20 between Sioux City 

and Sac City, Iowa, on Iowa Highway 92 between Interstate Highway 35 and 

Carson, Iowa, and representative bridges were observed on the Kansas 

Turnpike between Wichita and Kansas City, Kansas. Because of time 

limitations, only three bridges were carefully observed in Nebraska. 

Thus, the greater number of steel than concrete bridges observed was a 

natural rather than planned occurrence. For instance, virtually all 

bridges on the Kansas Turnpike are steel bridges. 

During observation the following items were noted: date; temperature 

location and type of bridge; whether or not the bridge was open to traffic 
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FIELD OBSERVATIONS 

The third phase of the research project consisted of field observation 

of the behavior of bridge supporting and expansion devices. Both steel 

and concrete deck type bridges were observed. Steel bridges included 

plate girder, I-beam, and WF-beam bridges. Concrete bridges included 

reinforced concrete girder, precast prestressed beam, and concrete box 

girder bridges. All bridges had a concrete roadway slab, and some had 

an asphalt wearing surface. The design of the bridges may or may not have 

been based on composite action. General limitations for observation were 

that the bridges should be of three or more spans, either simply supported 

or continuous. Span lengths were usually 50 ft or more. 

The following basic procedure was used to select at random bridges of 

various types and ages. A general area, usually within one day's auto 

travel of Ames, Iowa, was selected and all concrete and steel deck type 

bridges within the span limitation were observed in sequence. For areas 

removed from Ames, the same general procedure was followed. For example, 

bridges were observed in sequence on U. S. Highway 20 between Sioux City 

and Sac City, Iowa, on Iowa Highway 92 between Interstate Highway 35 and 

Carson, Iowa, and representative bridges were observed on the Kansas 

Turnpike between Wichita and Kansas City, Kansas. Because of time 

limitations, only three bridges were carefully observed in Nebraska. 

Thus, the greater number of steel than concrete bridges observed was a 

natural rather than planned occurrence. For instance, virtually all 

bridges on the Kansas Turnpike are steel bridges. 

During observation the following items were noted: date; temperature 

location and type of bridge; whether or not the bridge was open to traffic 
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year of construction, if known or could be determined; type of abutments; 

types of supporting devices at abutments and piers; type of floor expansion 

device; design opening of expansion device (if determined from design 

drawings); and opening of expansion device observed. Also a sketch was— 

made showing span lengths, position and type of supporting and expansion 

devices, and, if applicable, relative movement of supporting devices. 

Irregularities in the functioning of supporting and expansion devices or 

other component parts of the bridge and the cause, if possible to determine, 

were likewise noted. For this investigation the term "irregularity" 

denotes any behavior of the bridge (superstructure or substructure) not 

anticipated or desired in the design of the bridge. Thus irregularities 

include such items as "freezing" of supporting or floor expansion devices, 

shifting of abutments, spalling or cracking of abutments, and inconsist

encies of rocker movement. An irregularity does not necessarily reflect 

the capacity of the bridge. However, many irregularities would be 

repaired if they were known to exist. As field observations progressed, 

other factors of possible influence became evident. For example, it 

became apparent that the amount of expansion still available between the 

approach slab and abutment backwall or floor slab could influence abutment 

movement and on subseqnent observations this also was noted where possible. 

The bridges observed which fall within the limitations of the 

project are grouped and tabulated in Table 11, Appendix C. For ease of 

possible comparison, the bridges were basically grouped by type, number 

of spans, approximate length of structure, and type of supporting device. 

The irregularities observed are listed separately and follow Table 11, 

Appendix C. Typical irregularities observed are shown in Figs. 19-24, 
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Appendix C. Typical supporting and expansion devices, and combinations 

of devices observed are shown in Figs. 17 and 18, Appendix B. 

Of the 83 bridges tabulated, 39 show irregularities. It will be 

noted that ttOtiy of the bridges had floor expansion .devices which either 

were closed "tight" or had much less provision for further expansion 

than designed for at the observed temperature. Shifting of abutments, 

spalling and cracking of abutment backwalls, inconsistent rocker move

ment, cracked concrete bearing seats, and extrusion of asphaltic expansion 

joints were common observations. 

The field observations show a high frequency of irregularities of 

bridge behavior and emphasize the probability of their continued occurrence 

under design methods now used. However, from the bridges observed, no 

definite trend or regularity of pattern can be isolated nor can a predic

tion be made as to which irregularity will occur or when it will occur. 

For example, both closed and open floor expansion devices were observed 

on bridges with concrete, asphalt, and gravel approaches. Similarly, 

evidence of abutment movement and irrational rocker movement were observed 

for all types of approaches and heights of approach fill. Irregularities 

were also observed in both old and relatively new bridges. 

During the field observations different eras of design procedure 

became apparent. In many cases the approximate age of the bridge can be 

estimated within reasonable limits by the type of abutments, piers, and 

supporting devices used. However, one bridge observed was constructed in 

1934 and utilized the essential characteristics of a currently proposed 

method of using flexible abutments and piers with no provision for 

expansion of supporting devices or floor slab. The bridge, located on U.S. 
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Highway 75 at Sioux City, Iowa, has a single row of vertical piling with 

concrete cap at the ends of the bridge with a separate retaining wall 

spaced 3/4 in. at 80° F from the end of the bridge. The concrete center 

piers rest upon two vertical rows of piling. No roadway expansion device 

was used other than mastic at the approach slab. The bridge was in very 

good condition, and the design engineer reported that this bridge was the 

first so designed that the piers and columns were deflected to take care 

of the expansion of the bridge, that the bridge had no maintenance other 

than an occasional painting of structural members, and further that the 

bridge has been subject to the ravages of the Floyd River and the great 

increase of traffic over the past many years with no appreciable effect. 

Several bridges were observed on the Kansas Turnpike with flexible stub 

abutments and flexible concrete column piers. The steel beams, or girders, 

were anchored at all points. These bridges had been in service five or 

six years and showed no apparent irregularities. 

Several interesting bridges were observed which were not within the 

limitations of this project and thus were not included in the tabulation. 

These include portions of freeways in Kansas City, Kansas. One freeway 

had plate girders resting on concrete columns with approximately 1000 ft 

between expansion devices. Another used curved steel girders with field 

welded splices. Single steel columns were used, and the girders were 

fixed to the columns except for the lasL two columns before the expansion 

joints; There was approximately 1000 ft between expansion joints, and 

spans were approximately 90 ft. One 1500 ft steel bridge on the Kansas 

Turnpike was constructed on flexible steel pile bents with 500 ft 
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between expansion joints. Another bridge, a 450 ft concrete box girder, 

used single column concrete piers and no expansion device. 

It is unfortunate that many bridge design engineers cannot make 

periodic field investigations of their respective bridges. Such investiga

tions are extremely interesting and provide a better insight to "engineer

ing judgment". 
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FACTORS WHICH INFLUENCE THE BEHAVIOR OF SUPPORTING 

AND EXPANSION DEVICES 

During the course of the first three phases of the investigation the 

multiplicity of factors which may influence the behavior of supporting and 

expansion devices became more and more apparent. Some of these factors 

are recognized and partially taken into consideration during the design. 

Others are either not recognized or they are neglected because of the 

difficulty of calculation or lack of present analytical methods. 

Fortunately, many of the factors are accommodated by the inherent factor 

of safety of the structure. 

The proper consideration of these factors is made more difficult by 

their interdependence and interaction. Often a greater allowance for one 

factor merely delays rather than prevents the action due to that factor or 

magnifies the action of another. Other variables of behavior are intro

duced by the fact that in many cases the Design Engineer has no control 

over constructional procedure. Behavior of a component part, not normally 

anticipated in design, may influence the behavior of other members of 

the structure. 

The reaction capacity of the supporting devices and the provision for 

thermal expansion are considered in calculating the final sizes and 

allowance for expansion of supporting and expansion devices required. 

Design values for total range of expansion vary between 0.56 in. per 100 

ft (German Proposed Specifications) and 1.25 in. per 100 ft (AASHO 

Specifications) for steel or between 0.42 in. per 100 ft (German Specifi

cations) and 0.70 in. per 100 ft (AASHO Specifications) for concrete. 
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The use of the above values for thermal expansion assumes the 

coefficients of thermal expansion for a steel bridge and a concrete bridge 

to be 6.5(10)"^ and 6.0(10)'^ per respectively. As shown in the Review 

of Literature, the coefficient of thermal expansion of concrete varies 

within a wide ran^a depending on method of curing, humidity, precipitation, 

temperature, and other variables. The coefficient for concrete is 

different from both that of the aggregate or the cement. Values of the 

coefficient for concrete have been found from 3.4 to 7.3(10)"^ per °F. 

It is logical that the coefficient of thermal expansion for a steel 

bridge with a concrete deck will be different from that of the steel or 

concrete and will be influenced by the factors which vary the coefficient 

of the concrete. 

Other factors also influence the thermal expansion of the super

structure. It is accepted that the absorption of solar radiation is 

influenced by the color and orientation of the surface. Thus, a light 

colored steel beam shaded by the bridge deck and exposed to the cooler air 

below the bridge will not expand in the same manner as an exposed truss 

painted black. 

In calculating the provision for expansion, it is natural to assume 

that the abutments and piers have been designed so no shifting will occur. 

Field observations show that this assumption is very often incorrect. 

Abutment movement may be caused by compaction, settling, or shifting of 

approach fill; growth or expansion of approach slabs; "freezing" of 

supporting and expansion devices; and many other factors. Pier movement 

may be caused by many of the same factors. 
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Regardless of the cause, if abutment or pier movement occurs and 

the abutment comes in contact with the end of the bridge additional 

stresses are induced in the bridge. Thermal expansion must then overcome 

not only frictional forces due to the supporting and expansion devices, 

but also the passive soil pressure behind the abutment and, perhaps, the 

friction between the soil and an unknown length of approach and pavement 

slab. Spalled and cracked abutments often result from pier and abutment 

movement. 

The above examples point out only a few of the factors involved. 

However, they illustrate the fact that the behavior of bridge supporting 

and expansion devices may be influenced by any one of an extremely large 

number of variables. 

As a result of this investigation, the following factors are 

considered to be some of the variables which influence the behavior of 

supporting and expansion devices: 

A. Properties of component materials and structural elements. 

1. Coefficient of thermal expansion 
2. Thermal diffusivity 
3. Coefficient of thermal conductivity 
4. Stiffness or flexibility of superstructure, piers and 

abutments 
5. Porosity and moisture absorption 
6. Ductility 

7. Tensile strength 
8. Resistance to chemical action 
9. Corrosion resistance 

B. Environmental influence (atmospheric conditions). 

1. Fluctuation and range of ambient temperature 
2. Solar radiation 
3. Precipitation 
4. Humidity 
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C. Geometry. 

1. Orientation of bridge 
2. Degree of skew 
3. Allowance for expansion 
4. Physical arrangement of bridge deck, abutments and roadway 

approach 

5. Amount and arrangement of reinforcing steel 
6. Composite action 
7. Span lengths 

8. Overall length of structure 

D. Other. 

1. Type of bridge 
2. Type and arrangement of devices used 
3. Relationship between dead and live loads 
4. Traction of live loads 
5. Frequency of traffic flow 
6. Direction of traffic flow 
7. Speed of vehicles 
8. Type and condition of wearing surface 
9. Type and condition of roadway and approaches 
10. Height of abutment fill 
11. Type of abutment fill 
12. Method and order of abutment fill compaction 
13. Stability of soil 
14. Types of soil strata 
15. Fluctuation of water table 
16. Active and passive soil pressures 
17. Horizontal and vertical movements of piers and abutments 
18. Accumulation of debris 
19. Maintenance 

Any attempt to predict the future behavior of a bridge, taking into 

account all of the above factors, is virtually impossible. A prediction 

based upon an assumption that only a small isolated group is pertinent 

would be erroneous. A quick, easily calculated solution cannot be 

anticipated. 
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EXPERIMENTAL INVESTIGATION 

The results of the first three phases of the investigation indicated 

that the use of elastomeric bearings should eliminate many of the 

problems associated with supporting and expansion devices. Elastomeric 

bearings are being used but their use has been limited to prestressed 

concrete bridges by many engineers. Several engineers have expressed 

an interest in the use of elastomeric bearings for steel bridges but 

feel that more information is needed. 

A theoretical analysis by Zuk (66) indicated possible beneficial 

changes in vibration characteristics of highway bridges by the use of 

elastomeric bearing pads. Comparing the behavior of bridges (at the 

fundamental frequency) with elastomeric bearings and with conventional 

rigid bearings, Zuk obtained the following general conclusions: 

(a) the dynamic bridge deflections are increased; 
(b) the frequency of vibration is reduced; 
(c) the elastomeric bearings add damping to the system; and 
(d) the dynamic stresses in the bridge are significantly reduced. 

If, as concluded by Zuk, dynamic stresses are reduced by the use of 

elastomeric bearings, benefits would include: either an increase in 

factor of safety and fatigue life, which is desirable since traffic loads 

and volume continue to increase; or a possible reduction of load factor 

for impact with a resultant saving in material. 

A model test bridge which could be adapted to vibration tests for 

comparison of the behavior of rigid and elastomeric bearings was available 

for this investigation. It was felt that the results of such tests 

would be of value to bridge design engineers. 
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Laboratory Test Bridge 

Two model bridges are located in the basement of the Iowa Engineering 

Experiment Station. Both have a roadway of 10 ft and spans of 10 and 25 

ft each. Constructed during the period from the summer of 1952 to the 

summer of 1953, they were originally used by Holcomb (29) for static and 

dynamic tests of load distribution. The research was sponsored by the 

Iowa State Highway Commission as Research Project HR-12. Dynamic loads 

were applied by the use of model "trucks." Both bridges were subsequently 

used by Senne (55) for static concentrated load distribution tests, 

HR-61, and the 25-ft bridge was used by Smith (57), HR-67, for impact 

factor studies using stationary dynamic and moving load tests to correlate 

field tests by Linger (34). 

The 25-ft bridge (Fig. 1) was used for this investigation and is 

approximately one-third the size of a standard highway bridge; however, it 

cannot be considered an exact model of a prototype highway bridge due to 

changes in some of the dimensions for test purposes. It does, however, 

represent a 75-ft span highway bridge with somewhat thinner slabs and 

lighter beams than those used in actual design. 

The deck is a 2%-in. concrete slab. Primary reinforcement consists 

of No. 5 smooth wires (0.207 in. diameter) spaced on 2 in. centers. Two 

of every three rods are bent up over the supports for negative reinforcing 

and an additional straight rod is located near the top of the slab above 

the third rod. Longitudinal reinforcement consists of No. 5 wires spaced 

7.7 in. on center, or six rods per panel, all near the bottom. Coverage 

is 7/16 in. to the center of the prliiary reinforcement at both faces. 
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This arrangement of reinforcing uses about one-half the weight of steel 

which would be required for a one-third scale ratio between model and 

prototype. 

Each beam has a constant cross section with the composite moment of 

inertia of the interior beams approximately 1% times that of the 

exterior beams. The relative size of the interior and exterior beams 

was intended to be about the same as for highway bridges, but the beams 

were made smaller than would be obtained by scale reduction. This was 

done in anticipation of a possible future change in AASHO Specifications 

and to increase the strains and deflections measured. Shear lugs were 

welded to the top of the beams for composite action. The 5/8-in. 

diameter reaction rods were not adaptable to this investigation and were 

replaced with a "stub-column" type of support (Fig. 2) made from a 6VJF 

section. 

The weight of a one-third-scale model is reduced to 1/27 of that of 

a prototype made of the same materials. To obtain the same dead load 

strains and to obtain dead load deflections reduced by the scale factor, 

the weight of the model should be 1/9 that of the prototype. The 

deficiency in weight of the laboratory bridge was made up by hanging 

concrete blocks from the slab for the tests made by Holcomb and Senne. 

However, this was not deemed advisable for this investigation due to the 

probability of undesirable vibrational effects. 

Senne reported Lnat the surface of the concrete deck had many hair 

line cracks which were considered usual for such slabs. During this 

investigation, transverse cracks extending across the width of the bridge, 

including curbs, were observed in the deck slab at approximately 5, 9, 



www.manaraa.com

41 

ii 1 I 

(r:-'*': 

mm 

Fig. 1 Test bridge 

6% 4̂  ̂'̂ 1'% "f** 
''t g\a " 

.uaw.i 

Fig. 2. End supports 



www.manaraa.com

42 

12% and 17 ft from the south end of the bridge. The width of the crack at 

midspan was less than the others. Another transverse crack, about 20 ft 

from the south end, extended through the east curb to the center-line of 

the bridge. Intermittent longitudinal cracks were observed approximately 

above the interior girders and penetrating the depth of the end diaphragms. 

No appreciable increase in width of crack openings was observed during 

the period of testing. 

General details of the bridge are shown in Fig. 3 and properties are 

shown in Table 2. 

Instrumentation 

The instrumentation was designed to determine vertical displacements 

and strains in the steel girders for dynamic loading at various frequen

cies. The tests were duplicated for three bearing conditions. 

Strains and deflections were measured by means of Type A-1, SR-4 

electric wire resistance gages. For strain measurement, two gages were 

mounted on the lower surface of the bottom flange at the midspan of each 

beam and located symmetrically with respect to the web. Compensating 

gages were mounted on a steel plate (Fig. 4) attached to angles which 

were fastened with epoxy cement to the bottom of the flange and adjacent 

to the active gages. 

Deflections were measured at midspan and at the supports. Gages 

were mounted on the top and bottom of small aluminum cantilever beams 

used for deflectometers» These beams were 0.090-in. thick, 1.0-in. wide, 

10-3/4-in. long at midspan and 7-in. long at the supports. Picture-wire 

cables were connected 3/4 in. from the end of the midspan deflectometers 
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Table 2. Properties of test bridge^ 

Span (L), ft 25 

Roadway width, ft 10 

Beam spacing (S), ft 3.22 

Slab thickness, in. 2.25 

Ratio lint./^ext. midspan^ 1.48 

EI of total section^ at midspan, (10)^ Ib-in.^ 37.43 

Total weight of bridge^, lb 11,031 

Interior Beam Exterior Beam 

I of beam^ at midspan, in.^ 379 256 

EI of beam^ at midspan, (10)^ Ib-in.^ 11.14 7.52 

Ist/cst at midspan, in.^ 35.8 25.9 

I of beam^ at midspan, in.^ 3030 2047 

Csiabs 3.87 3.25 

Cgt, in. 10.57 9.88 

Area of beam, sq in. 6.75 5.01 

Area of concrete, sq in. 86.9 67.6 

Weight of beam, plf ' 22.0 16.5 

Weight of concrete, plf 90.5 70.5 

^In part from Caughey and Senne (11, p. 11) and Holcomb (29, p. 76) 

^Composite interior and exterior beams 

^Equivalent all-steel section, n = 8 

^Experimentally determined, this research 

^Equivalent all-concrete section 
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and at the end of the support deflectometers. The center of the strain 

gages was 3/4 in. from the fixed end of the deflectometers. The midspan 

deflectometers were initially deflected 1 in. and tied to brackets 

mounted with epoxy cement at the midspan of the beam (Fig. 4). The end 

deflectometers were deflected % in. and tied to the junction of the web 

and bottom flange as close as possible to the reaction points (Figs. 

5, 6, 7). 

Precision resistors were used for dummy gages for the deflectometers. 

Four strand, shielded cable, Belden No. 8723 was used with an individual 

pair of wires for each gage. The circuitry provided double sensitivity 

and temperature compensation for all points of measurement. 

Available equipment for recording strain and deflection data included 

eight Model BL-520 Brush universal amplifiers with Model BL-350 strain 

gage input boxes; two Model BL-274 Brush four channel oscillographs; and 

three 20 channel and one 6 channel Baldwin SR-4 bridge balancing units 

(Fig. 8). One Baldwin-Lima-Hamilton Type N, SR-4 strain indicator; one 

Baldwin SR-4 load cell. Type C, 20,000 lb capacity; and one Blackhawk 

10-ton hydraulic Porto-Power, unit were also used for static load tests. 

Four of the amplifiers and one oscillograph were used for recording 

strains at midspan of each beam. The other four amplifiers and oscillo

graph were used with the four bridge balancing units to record deflections. 

The deflectometers were connected to the bridge balancing units so that 

either midspan deflections or end deflections at either end of all four 

beams or the midspan and end deflections of individual beams could be 

recorded at one time. To avoid internal adjustments of the strain gage 
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Fig. 4. Midspan strain gages and deflectometers 

Fig. 5. End deflactometer and curved steel sole plate 
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Fig. 7. End support with neoprene pad 
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input boxes it was necessary to add variable capacitors at the bridge 

balancing units for some of the deflectometers. 

Oscillator 

Due to lack of room for end approaches, Smith (57) found that it \-ias 

impossible to obtain satisfactory results by using model "trucks" for 

dynamic loading. Therefore, the oscillator used by Smith was remodeled 

and used to provide the vertical driving force for this investigation. 

This provided a steady state forced vibration with harmonic excitation 

and assured repetitive load conditions for the various tests. 

As shown in Figs. 9 and 10, the oscillator is a counterrotating 

eccentric weight oscillator, or exciter. Thus, the horizontal components 

of force cancel each other and the vertical components are additive. For 

equal weights and eccentricities, the vertical driving force produced is 

given by the equation (40, p. 51) : 

F = — 0)̂  (1) 
g 

where, 

F = vertical driving force, lb 

W = weight of each rotating mass, lb 

e = eccentricity of the mass center of each weight, in. 

g = acceleration of gravity, in./sec^ 

to = rotational velocity, rad/sec 

The weights were mounted on threaded shafts so the eccentricity could 

be varied. Of course, the weight of the shafts must also be considered 

in the above equation. 
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Fig. 9. Oscillator 
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The oscillator was powered by a one-horsepower variable speed motor. 

The variable speed lever of the motor was connected to a gear and train 

attached to a small motor controlled by a Powerstat (transformer). Thus, 

by remote control, the frequency of oscillation could be changed from 

one steady state to another or varied with time. The necessity for 

increasing or decreasing the frequency of the forcing function with time 

became apparent early in the investigation. It was found that as the 

forcing frequency approached the natural frequency of the bridge, an 

attempt to slightly increase, or decrease as the case might be, the speed 

of the motor resulted in a larger amplitude of deflection rather than an 

increase in forcing frequency. At a certain point the forcing frequency 

"slLpped" past the natural frequency and leveled off approximately 1% to 

2 cycles per second beyond the natural frequency. This occurred for both 

increasing and decreasing changes of motor speed and frequency and made 

it impossible to obtain maximum amplitudes of strain and deflection at the 

natural frequency by means of constant frequency tests. Timoshenko 

(62, p. 48) states that other investigators have observed this increase 

of amplitude for forced vibrations without damping. 

Oye t0 bridge fhe opeiUatPP guppofted thfee 

ppinÈ§ §imila¥ le lh§ pginEm ef an i§qge§l@g t^isRgU, The pselllator 

W3g plaçiâ upen Ibffg sêâies ani 10 lb wêighig were yged te balanee the 

FisetiPRg lengiÊudiRâlly mû tP8R8V@Fgeiy, Tetil weight ef the egeillater 

and wfightg wa§ #4 Ih, The supporte eengisted of small swivel type 

eipeulsp plate; attaehed to 3/4=in, leveling bolto. The circular plateo 

roBted in holep milled in 5 by 5 by l-in, steel plates which were 

fastened to the bridge slab with epoxy cement. No noticeable uplift was 
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encountered but the oscillator was anchored adjacent to the support points 

by 5/16-in. bolts threaded into the steel plates and also by a bolt 

passing through the slab at the midpoint to reduce a slight torsional 

tendency of the oscillator. 

Contact points activated by a cam on one of the shafts of the 

oscillator were used to operate an event marker on the oscillograph for 

determination of the frequency of the oscillator. A tachometer was mounted 

on the instrument panel and attached to the oscillator to provide an 

approximation of operating frequency during the tests. 

Bridge Bearings 

Three bearing conditions were used: curved steel sole plates; 64 

durometer hardness neoprene pads; and 49 durometer neoprene pads (Figs. 6, 

7, 11). The model bridge had been constructed with 5/8-in. diameter 

cold-rolled reaction rods which were not adaptable to this investigation. 

Also, observations indicated that the reactions were no longer the 

desired values. Type A-1, SR-4 strain gages diametrically attached to 

the reaction rods were in good condition. The bridge was jacked up and 

the reaction rods removed and recalibrated using a 60,000 lb capacity 

Baldwin-Southwark universal hydraulic testing machine. The reaction 

rods were replaced with the nuts for the abutment bolts below rather 

than above the reaction rod brackets. The desired reaction values were 

calculated assuming the reactions of interior girders to be the weight 

of the girder plus one panel of deck. The reactions of exterior girders 

were then assumed to be the difference between the total weight of the 

bridge and the reactions of the interior girders. Thus, the reactions 



www.manaraa.com

53 

Fig. 11. Curved steel sole plate, bearing 

(masonry) plate, and neoprene pads 
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of the interior girders (only) were determined by accepted design 

practice (9, p. 7-4). The desired reactions were obtained in each 

reaction rod by raising or lowering the nuts on the abutment bolts and 

determining the reactions by means of an SR-4 Indicator and switch balanc

ing unit. This was a very sensitive, tedious, and time-consuming 

operation due to the stiffness of the end diaphragm. 

Small aluminum T-sections had been fastened with epoxy cement to the 

inner face at the top of the abutment for reference points prior to obtain

ing the desired reactions. The distance from the T-sections to the bottom 

flange was measured with inside micrometers. The relative difference in 

heights to the bottom flange of each beam was used to assure the same 

reactions when changing from one type of bearing to another. That is, 

shims were used to maintain the same relative heights and, thus, the 

same reactions. 

Reaction values and heights after shimming for each bearing condition 

are shown in Table 3. 

Curved steel sole plates 

The curved steel sole plates (Fig. 11) were made of 7/8 by 2% by 4 

in. cold-rolled steel turned to a 5%-in. radius in the 2%-in. dimension 

and welded to % by 5% by 7-in. blocking plates. Bearing(masonry) plates 

were % by 6 by 10 in. hot-rolled steel and contact surfaces were milled. 

Both the curved steel sole plates and the bearing plates had a finish 

finer than ASA-125 required by some State Highway Departments. Two %-in. 

tapered pintles were mounted in each bearing plate. Two 37/64-in. holes 

were drilled in the curved steel sole plates for the fixed end and slotted 

holes 19/32 by 3/4-in. were provided for the expansion end. 
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Table 3. End reactions—bridge only--and deviation of relative heights 
after shimming 

Exterior Interior Interior Exterior 

End reactions, lb 

North end 1188 1593 

South end 1165 1565 

Deviation of relative heights 
after shimming, in. 

Curved steel sole plates 

North end +0.0003 0.0000 

South end -0.0004 0.0000 

64 durometer pads 

North end -0.0020 0.0000 

South end +0.0015 0.0000 

49 durometer pads 

North end -0.0054 0.0000 

South end +0.0041 0.0000 

1593 

1579 

1192 

1156 

+0.0001 0.0000 

-0.0004 -0.0004 

+0.0001 -0.0004 

-0.0011 -0.0025 

-0.0041 +0.0015 

-0.0012 -0.0039 

Neoprene pads 

The neoprene pads (Fig. 11) were 4 by 3% by 0.660 in. (average) and 

were furnished by The General Tire and Rubber Go. One set of pads averaged 

64 durometer hardness, the other 49 durometer. The 3^-in. dimension was 

placed in the longitudinal direction of the girders. Shape factor 

(average) was 1.41; see p. 7. 
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Stress-deflection curves are shown in Fig. 12. 

The natural frequency of undamped free vibration of the pads may be 

calculated from (25, p. 95): 

f^ = 188 /5 (2) 
^ W 

where, 

f^ = undamped natural frequency, cpm 

= spring rate, lb/in. 

W = weight of the mass, lb 

This reduces to: 

r 188 
- IT (3) 

where, 

d = static deflection, in. 

Properties of the neoprene pads are shown in Table 4. 

The compressive strain is less, approximately 20% harder, than that 

predicted by accepted graphs for rubber (25), which is not surprising since 

these pads were made from especially compounded formulas for bridge bear

ing use. 

The size of the neoprene pads used was not selected on the basis of a 

one-third scale reduction, but the pads are felt to be representative. For 

example, no consideration was given to size required by possible slippage 

due to thermal movement since the tests were conducted in a relatively 

stable temperature environment. Also, some design pamphlets (17) indicate 

that, as long as compressive stresses are within reasonable limits, size 

of pads may be governed somewhat by esthetic appeal. 
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Fig. 12. Stress-deflection curves for neoprene pads 
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Table 4. Properties of neoprene pads 

64 durometer 49 durometer 

Spring modulus , lb/in. 

at 715 psi 

at 250 psi 

at 100 psi 

Natural frequency^, cps 

using d at 715 psi 

using d at 250 psi 

using d at 100 psi 

Compressive strain^, per cent 

at 715 psi 

at 250 psi 

at 100 psi 

69,000 

64,800 

64,800 

8.3 

13.5 

21.3 

21.9 

8 . 2  

3.3 

57,100 

41,400 

35,000 

7.5 

10 .8  

15.7 

26.8  

12.9 

6 . 1  

^From Fig. 12 

^From Equation 3 

Testing Procedure 

The same basic testing procedure was used for the three bearing con

ditions. A complete series of forced vibration, natural frequency and 

static load tests was completed for each type of bearing in the following 

order: (1) curved steel sole plates* (2) 49 durometer neoprene pads; and 

(3) 64 durometer neoprene pads. As may be seen in Fig. 6, the bearing 

(masonry) plate and one blocking plate were removable. This was necessary 
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due to the pintles used for the curved steel sole plates and the fact that 

these sole plates were welded to blocking plates. For neoprene pads, these 

plates were replaced with smooth plates. No surface machining was done to 

the plates used for neoprene pads other than removal of mill scale with a 

belt type sander. The neoprene pads and plates were thoroughly cleaned 

with toluene at the time of placement. 

To interchange bearings, the bridge was jacked up, bearings changed 

and shims inserted between the two blocking plates to give the same rela

tive distance in each case from the bottom flange to the reference points. 

This assured the same reactions for each type of bearing. Some creep was 

encountered when shimming for the neoprene pads. 

Considerable difficulty was experienced with capacitance change due 

to amplifier transformers and amplifier drift between the series of tests 

made with the curved steel sole plates and the 49 durometer pads . These 

problems were resolved by replacing all amplifier transformers; mounting 

cooling fans on each amplifier; letting the amplifiers "run" continuously 

during the remainder of the testing period; and enclosing the basement 

stairwell during extremely cold weather. 

Forced vibration tests 

For one group of tests, the oscillator only was placed at the mid

point of the bridge as shown in Figs. 9 and 10. A series of constant 

frequency and variable frequency tests were made, with the frequency vary

ing from about 4 cps to the natural frequency and from about 12 cps to the 

natural frequency. Two different pairs of eccentric weights were used. 

The weights in one pair weighed 0.82 lb each; the other 3.48 lb each. 
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The small set of weights was placed at an eccentricity of 7.01 in. Two 

eccentricities were used for the larger set; 3.26 in. and 4.51 in. One-

half-in. diameter rods were machined to the desired length and used as 

inside micrometers to assure repetitive eccentricities. Thus, three tests 

were conducted with different forcing functions for each bearing condition 

for a total, of nine tests for the oscillator only at the mid-point. 

Like tests were also conducted with 1576 lb of concrete blocks placed 

alongside the oscillator as shown in Figs. 13 and 14. This gave fa 

additional nine tests or a total of 18 tests for this investigation. 

Tests were also conducted with the oscillator placed at the midspan 

and near the edge of the bridge, with and without concrete blocks, for the 

small set of eccentric weights and the large set at the smaller eccen

tricity. For reasons of time and expense, the data from these tests have 

not been evaluated. 

Strains in the bottom flange at midspan of each beam were recorded 

for all types of bearings. Deflections at midspan of each beam were 

recorded for the curved steel sole plates. End deflections for the sole 

plates were found to be negligible, if any. For the neoprene pads, 

deflections at the midspan and ends of one girder (exterior, interior) 

and at midspan of the adjacent girder (interior, exterior) were recorded. 

This procedure for deflections (neoprene pads) was repeated for all four 

girders. 

Natural frequency 

The natural frequency of the bridge was obtained for the three bearing 

and two dead load conditions from oscillograph recordings of strain and 
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deflection at midspan. Deflections at the ends of the bridge were recorded 

but were of such small magnitude, even at full gain of the amplifiers, that 

no reliable data could be reduced. 

The method used to obtain free vibrations was to have a person set the 

bridge in oscillation by dropping onto and instantaneously lifting himself 

off the bridge. 

Like tests were also made for the vibrator placed near one side of the 

bridge, but as previously stated, this data was not reduced. 

Natural frequencies were also obtained for the deflectometers at mid-

span and at the ends by disconnecting the anchoring cables and releasing 

the deflectometers from a displaced position. 

Static load tests 

Static load tests were conducted for the three bearing conditions to 

check the linearity of the amplifiers and provide calibration curves for 

reduction of data. A hydraulic jack and Baldwin SR-4 load cell were 

placed between the oscillator and the floor above for downward loading. 

Upward loading was accomplished by placing the jack and load cell between 

the floor below and a steel plate mounted to the bottom of the deck slab at 

midpoint. Maximum loading was approximately 4000 lb downward and 3000 lb 

upward. 

Strain oscillograph recordings were taken at the midspan of the gird

ers and deflection oscillograph recordings (of the deflectometers) were 

taken at midspan and the ends of the bridge. Also, dial gages with a 

least count of 0.001 in. per division were placed below the girders at 

midspan and values recorded for each load increment. 
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Fig. 13. Oscillator with concrete blocks 

Fig. 14. Oscillator with concrete blocks 
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An additional calibration check was made by connecting the deflecto-

meters to a turnbuckle and placing a dial gage below (or above) the 

deflectometers. The deflectometers were displaced, above and below the 

initial displaced position, by tightening or loosening the turnbuckle. 

Dial readings and pen movement of the oscillograph were recorded for 

correlation.. 
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RESULTS OF EXPERIMENTAL INVESTIGATION 

Static Load Tests 

The data obtained from the static load tests were reduced and used 

to plot calibration curves for such relationships as load-strain, deflec-

tion-attenuator lines, and load-deflection. Approximately 110 calibration 

curves were plotted using a Mosely Model 2D-2 X-Y Recorder with Model 

40D Keyboard. These curves showed a linear relationship between the two 

variables; thus, the slope of the various curves was used for calibration 

constants. 

Values of strain at midspan of the girders were obtained from the 

equation (8): 

® " NK^F^CR^ + R) (4) 

where, 

S = sensitivity, strain/attenuator-line 

N = number of active strain gages (2, this case) 

= calibration point, attenuator-lines (75, this case, or 15 lines 

at attenuator 5) 

= gage factor of strain gage (2.06, this case) 

R = resistance of strain gage (120.0 ohms, this case) 

Rq = resistance of calibrator resistor (390 K, this case) 

This reduces to (for static load tests): 

S = 1 micro-in./in. of strain/attenuator-une (4-a) 

For vibration tests, since double amplitudes were measured: 

Strain, micro-in./in. = % (number of attenuator-lines) (4-b) 
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Attenuator-line values were obtained by multiplying the oscillograph 

pen deflection--number of lines on the chart paper at 1 mm per line--by 

the attenuator--amplifier sensitivity--setting. 

A typical calibration curve is shown in Fig. 22, Appendix D. Typical 

calibration constants obtained from the calibration curves are shown in 

Table 5. 

Contrary to theory, which would indicate the same strain for a given 

load regardless of type of supports, the calibration curves show a greater 

static load required for the curved steel sole plates than for the neoprene 

pads to produce the same strain. This behavior becomes compatible when 

considering the fact that when the bridge deflects the bottom flange, 

located below the neutral surface, tends to "elongate" at the supports. 

This movement is opposed by friction between the curved steel sole plate 

and bearing (masonry) plate. This opposing force, also located below the 

neutral surface, produces the same effect as a negative moment and an 

axial force acting at the neutral axis. The strain at midspan resulting 

from the negative moment is of opposite sign to that caused by the static 

load. Under similar longitudinal movement at the support, the neoprene 

pads deflect longitudinally producing shear strain in the pads and, thus, 

some force opposing movement of the flange. The relative magnitude of 

negative moments produced would basically be dependent upon the coefficient 

of friction for the steel on steel and shear modulus (17) for the 

neoprene. 
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Table 5. Typical calibration constants from static load tests 

li^, micro-in./in. = C1(A, dial divisions) 

Bearings CI, exterior beam 1-1 CI, interior beam 3-1 

Curved steel 10.10 7.00 
sole plates 

64 durometer pads 9.30 6.25 

49 durometer pads 8.70 6.05 

U^, micro-in ./in. = C2(A^, deflection attenuator-lines, single amplitude) 

Bearings C2, exterior beam 1-1 C2, interior beam 3-1 

Curved steel 8.50 6.30 
sole plates 

64 durometer pads 7.85 5.58 

49 durometer pads 7.40 5.20 

a b 
H , micro-in./in. = C3(A , strain attenuator-lines, single amplitude) 

Bearings C3, exterior beam A C3, interior beam C 

Curved steel 14.70 7.20 
sole plates 

64 durometer pads 13.60 6.65 

49 durometer pads 13.50 6.60 

A^, deflection attenuator-lines = ESl'^Cu^, micro-in./in.) 

Bearings ESI, point 4-2 ESI, point 2-2 

64 durometer pads 0.0070 0.0097 

49 durometer pads 0.0145 0.0179 

^Unit strain reading for load cell. Load, P, lb = 4.95(1 

^Oscillograph pen movement 

^South end of bridge 
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Natural Frequencies 

An extensive theoretical study of the dynamic behavior of the test 

bridge is beyond the scope of this investigation. This is due partly to 

the large number of variables involved -- such as cracks in the deck slab, 

number and arrangement of girders, and type and degree of damping--and 

the lack of methods for predicting the influence of many of the variables 

on bridge behavior. Even a simplified analysis based on simplifying 

assumptions requires further assumptions such as type of damping and 

magnitude of damping coefficient. 

However, natural frequencies of the test bridge, based on the 

accepted assumption that the bridge acts as a single beam, are easily 

handled and provide a means of comparison with experimental results. 

Assuming the bridge to behave as a single beam, the natural frequency 

of the unloaded bridge only with steel (rigid) supports may be,computed 

from the equation (28, p. 25): 

w^ = weight of the bridge per unit length, lb/in. 

More pertinent to this investigation is the natural frequency of the 

test bridge with the oscillator at midpoint, with and without concrete 

(5) 

where, 

fy = natural frequency of the unloaded bridge, cps 

L = length of bridge, in. 

EI = flexural rigidity of the bridge, Ib-in.^ 

g = acceleration of gravity, in./sec^ 
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blocks. For this case, it is customary to use the following equation as 

explained by Timoshenko (62, p. 27) and Myklestad (40, p. 43): 

W = weight of the load, lb 

and all other terms are as given in Equation 5, above. 

A solution for the natural frequency of the loaded or unloaded bridge 

•with elastic supports is given by Zuk (66, p. 28) assuming, for simplicity 

of analysis, the oscillations of the load (vehicle) equal to that of the 

bridge. This condition is similar to that of the test bridge with 

oscillator. In part. Professor Zuk's analysis is as follows: 

Using Rayleigh's energy method of analysis ( 2 )  , the total 

bridge deflection will be considered as 

where, 

£, = natural frequency of the loaded bridge, cps 
bo 

2 
m = mass of the bridge per unit length, lb-sec /in. 

2 
M = mass of the load, lb-sec /in. 

y = (a + b sin —) cos pt = X cos pt (7) 

where p is the circular frequency, t is time, a is the maximum 

support deflection, and b is the maximum beam deflection. 

In Rayleigh's method, the maximum potential energy, V, is 

equated to the maximum kinetic energy, T. 

* 
Timoshenko (62). 
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From Article 4 in Timoshenko (_2) 

V = dx + 2 % 3% (8) 

J 0 

where EI is the flexural rigidity of the beam, and k is the spring 

constant of the flexible support. 

2 'L 
T = ̂  I dx + % (9) 

0 

where m is the mass of the bridge beam per unit length, M is the 

mass of the vehicle applied to the beam, and is the maximum 

vertical velocity of the vehicle, taken as p(a + b) for harmonic 

mot ion. 

After equating V to T, regrouping, reducing, and minimizing to obtain 

the fundamental mode. Professor Zuk obtains the following: 

a = nb (10) 

where 

2 
n = n^EI(Lm+M) - 2nKL^(Lm+2M) + -j^ [2jtKL^ (Lm+2M) - it^EI(Lm-H4)] (11) 

+ 16jr'^EIKL^(2Lm+Tt M)^]- ^ / 8KL^(2Lm+rtM) 

[in the above equation for n, all terms to the left of the indicated 

division are included in the dividend.^ 

The circular frequency, p, is then determined by Professor Zuk from: 

2 3 5 —1 ^ 
4T(kn L -f- tt EI 

Zïïmn^L^ + 8nmL^ + irraL^ + 2nMn^L^ + WMnL^ + 2itML^ 
'  ( 1 2 )  

The fundamental frequency in cycles per unit of time is given by: 

f = £— 
Zn (13) 
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Another method for determination of the natural frequency of a beam 

system on elastic supports which takes into account the mass of the beam 

as well as the two equivalent masses of the supports is given by Jacobsen 

and Ayre (31, p. 86). Using the static-deflection method; a special 

case of Rayleigh's method, they obtain: 

p2 = g HiÈy (14) 
ZW^Ai 

where, 

p = natural frequency of the system, radians/sec 

2 
g = acceleration of gravity, in./sec 

= weight of the mass of individual concentrated loads, equivalent 

mass of beam, and equivalent mass of supports, lb 

= deflection of respective weights, in. 

An emphirical formula is given for determining the weight, wl^^, of 

the equivalent mass of the beam as: 

"̂ eq ' [-#- + 4f- 87] (15) 

where, 

Sav ~ midspan deflection due to supports, in. 

5g = midspan deflection due to dead load of beam plus concentrated 

loads. 

The natural frequency in cycles per sec is given by Equation 13. 

Myklestad (40, p. 42) states that undamped frequencies found by the 

equation 
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are higher than actual and discusses a refinement of the equation in the 

form of 

f = _±_ /g^y 

" 2" \/zWy2 
(17) 

Experimental natural frequencies are shown in Table 6 and comparative 

theoretical and experimental values of the natural frequency of the test 

bridge are shown in Table 7. 

Table 6. Experimental natural frequencies 

Frequency, cps 

Supports Avg. Max.. Min. 

Number of 
values averaged 

Oscillator only Steel 8.26 8.56 8.03 

64 durom. 7.83 8.41 7.46 

49 durom. 7.64 8.19 7.28 

49 

69 

62 

Oscillator with Steel 7.45 7.86 7.15 
cone, block 

64 durom. 7.01 7.42 6.60 

49 durom. 6.90 7.56 6.56 

44 

69 

69 
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Table 7. Comparative natural frequencies 

Frequency, cps 
From equation 

Supports Experimental 4 5 12,13 14,13 

Bridge only Stee 1 8.76 10.93 9.71 

Bridge with Steel 8 .26  10.27 9.29 
oscillator 
only 64 durom. 7.83 9.41 8.81 

49 durom. 7.64 8.76 7.94 

Bridge with Steel 7.45 9.16 8.44 
oscillator 
and conc. 64 durom. 7.01 8.45 7.72 
block 

49 durom. 6.90 7.91 7.23 

The experimental and theoretical values of natural frequency show 

relatively poor correlation. This may be partially accounted for by 

one or more of the following: (1) theoretical methods for determination 

of natural frequency usually give values that are slightly too high, 

especially for the fundamental frequency; (2) the aforementioned cracks 

in the deck slab may have partially destroyed the integrity of the bridge; 

(3) the assumption that the bridge acts as a single beam is, no doubt, 

in error; and (4) the assumed value for n, and ultimately EI, is 

incorrect. 

From Table 5 it is evident that under static load there is consider

able difference in the deflection of the exterior and interior beams and 
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that the bridge does not behave as a single beam. Using Table 5 to 

determine an experimental value of EI, assuming an average of the beam 

deflections for curved steel sole plates may be used with the load-

deflection relationship for a single beam, a value of approximately 63% 

of the theoretical value is obtained. However, this reduced value 

results in theoretical natural frequencies generally lower than the 

experimental values. 

More important to this investigation is the observation that both 

theoretical and observed frequencies for the model bridge seem lower than 

would be expected. From an assumed one-third model to prototype relation

ship and dimensional analysis, it may be shown, utilizing Equation 5, 

that the natural frequency of the model bridge (only) should be three 

times that of its prototype. The calculated and observed values for the 

test bridge would result in lower natural frequencies than observed by 

other investigators for approximate prototypes and bridges in general 

(22, 28). However, due to modifications discussed previously, the test 

bridge was not originally intended to be an exact model. 

Since this investigation is concerned with the relative behavior 

of the three types of support bearings tested, it is believed that the 

discrepancies between theoretical and observed natural frequencies have 

little influence on the basic objectives of the research. 
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Bridge Damping 

It is generally accepted that damping of bridges is neither viscous 

nor frictional. However, logarithmic decrements, based on the assumption 

of viscous damping, have been used for comparison (22, p. 94; 28, p. 39). 

Logarithmic decrements were determined from oscillograph recordings 

of natural, frequency tests and based, in general, on the first two cycles 

of maximum readable oscillation. 

The logarithmic decrement may be determined from experimental data 

by the equation (61, p. 46); 

Ô = - In — (18) 
n Xn 

where, 

Ô = logarithmic' decrement 

Xg = amplitude of initial vibration 

x^ = amplitude of nth vibration 

n = number of cycles. 

The decrement can also be expressed as: 

6 = (19) 
s/l-p 

where, 

Ç, = damping factor, or damping ratio of the coefficient of 

viscous damping to the critical damping. 

For small values of ̂  the denominator is assumed as unity and the 

following relationship used (61, p. 44): 

Ô S 2jr ̂  (20) 
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Experimental logarithmic decrements and damping factors are shown 

in Table 8. As would be expected, the observed damping factors may be 

considered negligible. However, it should be noted that these values 

were for small amplitudes and based on assumed viscous damping. 

Structural damping (61, p. 72) involves energy dissipation when 

structural materials are cyclically stressed. The energy dissipated per 

cycle of stress is independent of the frequency and proportional to the 

square of the strain amplitude for most materials. 

Thus for forced vibration near the natural frequency, or perhaps 

under impact loading, damping may become more significant. 

In a comparison of structural and viscous damping for a steady 

state near resonance, Thomson (61, p. 72) arrives at a value for the 

structural damping factor (as defined by Thomson) of twice the viscous 

damping factor. 

Vibration Tests 

As shown in Figs. 15 and 16, each oscillograph provided four channels 

of strain or deflection data plus a 1 sec tic mark on one side and a 

revolution tic mark on the other side of the chart paper. Chart speeds 

used were either 25 mm per sec or 50 mm per sec. Over 3 miles of chart 

paper was used in recording the various data of the investigation. In 

general, the method of data reduction was as follows: (a) by visual 

observation, from 50 to 125 selected points were marked on the chart paper 

for each test-run; (b) the total, or double, amplitude of each channel 

was measured to 0.1 mm and the distance of one cycle of oscillation, or 
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Table 8. Logarithmic decrements and viscous-damping factors 

Number of Average 
Logarithmic decrement values damping 

Supports Avg. Max. Min. averaged factor 

Oscillator only Steel 0.1524 0.2060 0.1150 42 0.0243 

64 durom. 0.1410 0.2560 0.0592 59 0.0225 

49 durom. 0.1222 0.1915 0.0535 54 0.0195 

Oscillator with Steel 0.1599 0.2760 0.0761 38 0.0255 
conc. block 

64 durom. 0.1594 0.2230 0.0970 60 0.0254 

49 durom. 0.1582 0.2320 0.1080 60 0.0252 

average of 2 cycles, was measured with a magnifying comparator to 0.001 in. 

and reconciled with the distance between revolution tic marks (these were 

usually in close agreement, although slight discrepancies were sometimes 

noted at the peak, or maximum, amplitudes at the natural frequency); 

(c) for tests with neoprene pads the phase relationship between deflecto-

meters at midspan and the ends was checked and found to be in phase for 

all cases; (d) the double amplitude, in millimeters, was multiplied by 

the attenuator, or sensitivity, setting to obtain values of attenuator-

lines . 

These values of chart speed, distance per cycle of oscillation, and 

magnitude of double oscillation were used with the calibration constants 

determined from the static load tests for reduction by an IBM 7074 com

puter. The computer program was written in Fortran. 
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Fig. 15. Typical oscillograph chart--strain 
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The strain data were reduced for values of frequency, cycles per 

second; dynamic strain in the bottom flange of each girder at midspan, 

inch per inch; driving force applied, pound; strain amplification factor 

(e/so)' dimensionless, i.e., the ratio of dynamic strain to the strain 

which would be produced by the dynamic force statically applied; and 

ratio of frequency to natural frequency, dimensionless. 

Deflection data for the steel supports were reduced for values of 

frequency, cycles per second; deflection of each girder at midspan, 

inches; forcing function, pound; deflection amplification factor for each 

girder (A/Ag), dimensionless, i.e., the ratio of dynamic deflection to 

the deflection which would be produced by the dynamic force statically 

applied; and ratio of frequency to natural frequency. 

Deflection data for neoprene pads were reduced to give values for 

exterior girder 1-1 (called A for strain) and non-adjacent girder 3-1 

(called C for strain) of frequency, cycles per second; total, or gross, 

deflection at midspan and each end, inches; forcing function, pound; 

average end deflection, inches; net deflection at midspan, inches; gross 

deflection amplification factors (A/Aq) at midspan and ends, dimensionless; 

average end deflection expressed as per cent of gross midspan deflection; 

and ratio of frequency to natural frequency. 

Graphs of various combinations of variables were plotted using an 

IBM 7074 computer and a Cal-Comp incremental plotter. 

Some representative maximum values obtained are shown in Tables 9 

and 10. Typical computer plots and composite graphs are shown in Appendix 

D. 
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Table 9. Maximum reduced values from strain data 

Supports STA^ STB^ STC STD AFSTA^ AFSTB^ AFSTC AFSTD 

Oscillator only at midpoint, 
7.01 in. eccentricity, 
small weights 

Steel 105.0 102.8 97.0 91.3 72.0 30.6 32.8 73.4 
64 durometer 62.0 64.5 62.3 56.3 49.3 24.9 24.3 49.1 
49 durometer 65.0 65.0 63.8 57.5 51.5 25.6 24.7 47.2 

Oscillator only at midpoint, 
3.26 in. eccentricity, 
big weights 

Steel 190.0 181.0 161.0 151.0 77.0 32.1 32.6 73.5 
64 durometer 117.0 123.5 119.0 105.5 50.7 26.1 25.7 51.0 
49 durometer 113.5 115.0 117.0 110.0 49.3 24.8 24.8 49.5 

Oscillator only at midpoint 
4.51 in. eccentricity, 
big weights 

Oscillator at midpoint with 
concrete blocks, 
7.01 in. eccentricity, 
small weights 

Oscillator at midpoint with 
concrete blocks, 
3.26 in. eccentricity, 
big weights 

Oscillator at midpoint with 
concrete blocks, 
4.51 in. eccentricity 
big weights 

Steel 197.5 191.0 171.0 158.0 61.5 26.1 27.4 60.4 
64 durometer 165.0 173.0 169.0 150.0 53.9 27.4 27.0 53.0 
49 durometer 155.0 160.0 156.0 141.0 46.7 24.4 23.1 44.6 

Steel 57.5 66.0 60.0 46.3 
64 durometer 49.0 57.0 55.3 44.5 
49 durometer 49.3 54.5 52.0 43.3 

Steel 117.5 166.0 
64 durometer 92.8 105.0 
49 durometer 89.3 97.5 

150.0 110.0 
104.8 97.5 
97.5 81.0 

Steel 140.0 190.0 205.0 156.0 
64 durometer 125.0 137.5 133.0 135.0 
49 durometer 124.0 147.5 141.0 110.5 

53.4 
47.1 
47.7 

59.9 
51.9 
48.2 

55.8 
54.4 
48.9 

26.4 
2 6 . 6  
2 6 . 2  

36.3 
28.5 
26.5 

32.4 
29.0 
2 8 . 8  

27.3 
25.6 
24.6 

37.5 
28.7 
2 6 . 1  

40.0 
28.3 
27.1 

50.6 
45.7 
43.4 

66.0 
59.0 
45.0 

72.6 
59.4 
46.1 

^Strain (micro-in./in.), girder A 

^Some values believed in error due to malfunctioning of amplifier 

^Amplification factor (e/€o) for strain, girder A 
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Table 10, Maximum reduced values from deflection data 

Supports Yl-l'' Y2-1 Y3-1 Y4-1 AFYl-1^ AFY2-1 AFY3-1 AFY4-1 YS^ YN® YEA^ YMN® EPCYM® AFYS® AFYN 

Oscillator only. Steel 118.3 118 .3 124.2 117 .0 58.0 40.2 42 .4 54.5 

small weights 64 durom. 84.8 44.7 1 .82 3 .53 2 . 66 83.2 4.7 32 .9 45.3 
at 7.01 in. 49 durom. 89.5 52.8 4 .26 4 .84 4 .53 85.0 5.1 44 .9 43.9 

64 durom. 89.6 32 .6 2 .05 2 .94 2 .49 87.2 4.8 27 .5 32.9 

49 durom. 89.4 30 .3 3 .97 4 .32 4 .14 85.3 4.9 27 .9 28.4 

Oscillator only. Steel 204.2 203 .4 211.5 191 .8 57.5 39.7 41 .3 51.3 

big weights 64 durom. 157.0 47.0 4 .26 7 .42 5 .84 151.2 4.2 44 .1 53.8 

at 3.26 in. 49 durom. 155.5 46.5 8 .66 9 .72 9 .19 146.3 6.1 43 .0 42.8 

64 durom. 169.5 33 .7 4 .68 6 .76 5 .72 163.8 3.4 34 .0 40.1 

49 durom. 159.1 32 .5 7 .81 8 .98 8 .39 150.7 5.3 32 .9 34.8 

Oscillator only, Steel 223.1 217 .5 222.3 208 .5 48.8 33.3 34 .3 44.3 

big weights 64 durom. 209.3 47.5 6 .99 10 .70 8 .85 200.7 4.2 54 .9 58.9 

at 4.51 in. 49 durom. 208.7 44.5 12, .21 13 .76 12 .94 195.8 6.2 47 .0 45.9 

64 durom. 226.6 33, .8 8 .07 10, .03 9, .05 217.5 4.0 44, .0 45.6 

49 durom. 210.7 30, .6 10, ,93 12, .64 11, .79 198.9 5.6 32, .9 35.7 

Oscillator with Steel 69.5 76, ,4 76.5 63 .6 45.6 34.8 34, ,8 39.7 
conc. blocks, 64 durom. 67.5 44.4 1, .13 2, .18 1, .65 65.9 8.8 25, .7 34.7 

small weights 49 durom. 62.2 37.1 2, .64 3, .09 2, .86 59.3 6.9 27, .8 28.8 

at 7.01 in. 64 durom. 73.8 33, ,5 1, ,47 1, .72 1, .60 72.2 4.9 24, .7 23.9 

49 durom. 68.2 30, ,0 2, .79 2. .94 2, ,87 65.4 7.8 25. ,4 25.1 

Oscillator with Steel 160.0 174. ,3 177.8 146, .8 56.1 42.3 43. ,2 48.9 

conc. blocks. 64 durom. 126.6 46.2 3. ,02 4. 84 3. .93 122.7 6.6 38. ,2 42.4 

big weights 49 durom. 121.0 42.4 6. ,15 6. 88 6. ,52 114.5 6.2 38. .7 38.4 

at 3.25 in. 64 durom. 140.9 34. ,5 3. 48 4. 38 3. ,93 137.0 2.8 31. 3 32.8 

49 durom. 117.0 28. 3 5. 17 5. 84 5. .51 111.5 6.6 25. 9 27.4 

Oscillator with Stee 1 193.7 215. 8 225.0 181. ,4 49.4 38.4 40. 8 42.7 ' 

conc. blocks, 64 durom. 160.4 44.6 6. 35 6. 62 6. 39 154.9 4.2 61. 0 44.6 

big weights 49 durom. 167.8 42.5 9. 32 9. 26 9. 29 158.6 5.5 42. 1 37.0 

at 4.51 in. 64 durom. 178.4 32. 8 4. 91 6. 32 5. 61 172.8 3.2 17. 9 21.6 

49 durom. 180.6 32. 7 8. 88 9. 81 9. 34 172.1 5.2 33. 2 34.4 

^Yl-l is total dynamic deflection—downward or upward—at midspan of girder 1-1; AFYl-1 is deflection amplification factor (A/A^) for midspan 
of girder 1-1; YS is end deflection at south end; YN is end deflection at north end; YEA is average end deflection; YMN is net deflection at 
midspan of girder; EPCYM is average end deflection expressed as per cent of gross midspan deflection; and AFYS is deflection amplification factor 

for south end. All deflections are in units of in. (10)"3, 
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Strain 

Typical midspan strain-frequency curves are shown in Figs. 29-32 and 

37-42, Appendix D. The vertical driving force as determined from Equation 

1 is also shown on these graphs. Since the driving force is a function of 

the weight of the rotating mass, the eccentricity of the mass and the 

rotational velocity, comparisons should only be made between those tests 

where the same weights and eccentricities were used. 

From the strain-frequency curves and Table 9 the following may be 

seen : 

(1) The maximum strain, and thus the stress, in each girder at 

the respective natural frequency for each bearing condition 

was less for the elastomeric pads than for the curved steel 

sole plates, varying from 1.7 to 41.3% less. Strains were 

usually, although not always, slightly less for the 49 

durometer pads than for the 64 durometer pads. 

(2) At the natural frequency maximum strains at midspan of the 

four girders were approximately equal for a given bearing 

condition and in general decreased slightly from the west 

to the east side of the bridge when loaded with the oscilla

tor only. When loaded with the oscillator and concrete 

blocks, strains at midspan of the interior girders were 

larger than for the exterior girders. 

(3) The shape of the strain-forcing frequency curves for each 

bearing condition are generally similar but displaced to 

the left for the elastomeric pads. Thus at frequencies 

be low the natural frequency for curved steel sole plates 
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slightly larger strains (and stresses) were observed for the 

elastoraeric pads than for the curved steel sole plates. In 

general slightly higher strains were observed for the 49 duro-

meter pads. 

(4) Differences in strain become negligible in the region of the 

lower and higher frequencies tested--at approximately 4 to 

5% and 9% to 11% cps. 

It should be remembered that, while differences in strain were observ

ed, the magnitudes of strain were of low order. 

Strain amplification factor 

As used herein, strain amplification factor (e/e^) denotes the ratio 

of dynamic strain to static strain, or the strain which would result if 

the driving force was statically applied. Typical strain amplification 

factor-frequency curves are shown in Figs. 33-36 and 43-46, Appendix D. 

A comparison of these curves and Table 9 shows relationships similar to 

those for strain with reference to type of bearing condition used. The 

following observations should be noted: 

(1) Whereas the maximum strains in the exterior and interior girders 

were approximately of equal value—when loaded with the oscillator 

only—the strain amplification factors for the exterior girders 

were much greater than for the interior girders, usually about 

twice as large. 

(2) The maximum magnitude of strain amplification did not necessarily 

occur at the maximum strain. 
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Deflection 

Midspan deflection As may be seen from Table 10 and the typical 

midspan deflection-frequency curves shown in Figs. 47-48 and 55-60, 

Appendix D, the deflection relationships between the three bearing condi

tions are similar to those for strain. The deflection relationships may 

be summarized as follows; 

(1) At the respective natural frequencies, the total, and thus 

also the net, deflection at midspan was less--except for one 

case--for the neoprene pads than for the curved steel sole 

plates, varying from 1.4% more to 34.2% less. Differences 

between the total deflection for 49 and 64 durometer pad 

supports were small. 

(2) At the natural frequency maximum total deflections of the 

four girders were approximately equal for a given bearing 

condition when the test bridge was loaded with the oscillator 

only. When loaded with the oscillator and concrete blocks, 

deflections of the interior girders were larger than those 

of the exterior girders. 

(3) The shape of the midspan deflection-frequency curves for each 

type of bearing condition are generally similar but displaced 

to the left for the elastomeric pads. At frequencies below 

the natural frequency for curved steel sole plates slightly 

larger deflections were observed for the elastomeric pads 

than for the curved steel sole plates. 

(4) The curves show nearly equal magnitudes of deflection for each 

type of support condition at the lower and higher frequencies 

tested. 
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(5) The maximum total deflection observed was approximately % in., 

downward or upward, and occurred for both cases of loading 

(oscillator only and oscillator with concrete blocks) at the 

maximum driving force condition of big weights at 4.51 in. 

Since end deflections for the neoprene pads were of such small magni

tude, and then only for the case of resonance for the test bridge, only 

typical curves for total midspan deflection-frequency are shown. 

End deflection As stated previously, end deflections for the 

neoprene pads were of small magnitude and pronounced only within the region 

of the natural frequency. As shown in Table 10, deflections at the north 

end of the test bridge were larger than those at the south end. This is 

believed due in part to: (1) the total end reaction at the north end was 

slightly larger than at the south end; and (2) the larger number of trans

verse cracks in the deck slab of the south portion of the test bridge 

possibly reduced the energy transmitted to the south supports. 

The maximum average end deflections occurred in the region of the 

natural frequency and varied between 2.8 and 8.8% of the total dynamic 

midspan deflection for the respective type of neoprene bearing. 

In addition to vertical deflection, some longitudinal deflection of 

the neoprene pads was observed during vibration, but there was no dis

cernible transverse deflection. 

Deflection amplification factor 

Midspan deflection Deflection amplification factor (A/A^) as used 

herein denotes the ratio of dynamic deflection to static deflection, or 

the deflection which would result if the driving force was statically 



www.manaraa.com

86 

applied. From Table 10 and the typical deflection amplification factor-

frequency curves shown in Figs. 49-50 and 61-64, Appendix D, the same 

general relationships are observed as for the strain amplification factor. 

Although the amplification factors for total deflection at midspan of the 

exterior girders are larger than for the interior girders, the ratio is 

not as large as for strain. 

End deflection Typical deflection amplification factor-frequency 

curves for end deflection are shown in Figs. 51-54 and 65-70, Appendix D. 

From these curves and Table 10 the following general observations may be 

made : 

(1) As would be expected from the end deflections, the amplification 

factors for deflection at the north end of the bridge are 

generally larger than for the south end. 

(2) Amplification factors for end deflection of exterior girders 

are larger than for interior girders. 

(3) The amplification factors for maximum end deflections are 

generally of about the same magnitude as for maximum total mid-

span deflections. 
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SUMMARY AND CONCLUSIONS 

This investigation was initiated because some engineers were concerned 

about (1) the multiplicity of bridge supporting and expansion devices used 

by design engineers, (2) the wide range of cost of the various types of 

devices used which, frequently, influences the type of bridge design, 

(3) the fact that many types of devices do not function as anticipated, 

(4) incongruities which exist in design practice as to usage of the differ

ent kinds of devices, and (5) the apparent lack of information concerning 

behavior of bridge supporting and expansion devices. 

The initial objectives of the investigation were : (1) to review and 

make a field study of devices used for the support of bridge superstruc

tures and for provision of floor expansion; (2) to analyze the forces or 

factors which influence the design and behavior of floor expansion devices 

and floor expansion systems; and (3) to ascertain the need for future 

research, particularly on the problems of obtaining more economical and 

efficient supporting and expansion devices, and determining maximum allow

able distance between such devices. As the research progressed it became 

apparent that additional items should be considered and the initial 

objectives were altered slightly. The experimental portion of the investi

gation was conducted to provide more information about one of the possible 

solutions to the problems observed during the initial portion. 

The investigation was divided into four parts or phases as follows: 

(1) A review of literature; 

(2) A survey by questionnaire of design practice of a number of 

state highway departments and consulting firms; 
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(3) Field observation of bridges; and, 

(4) An experimental comparison of the dynamic behavior of rigid and 

elastomeric bearings. 

Since the initial and experimental portions of the research are basi

cally two separate investigations, the conclusions will be divided into 

two parts: (1) bridge supporting and expansion devices; and (2) dynamic 

behavior of rigid and elastomeric bearings. 

Bridge Supporting and Expansion Devices 

The following conclusions are based upon information obtained from 

the first three phases of the investigation: (1) review of literature; 

(2) survey of design practice; and (3) field observations. They are 

believed valid for short span, deck type highway bridges. 

1. There are extremely wide variations in present bridge design 

practice of state highway departments and consulting firms or 

engineers in regard to the type of bridge supporting and 

expansion devices used and the limitations for each type of 

device. These incongruities exist especially with respect to 

steel versus concrete bridges, but also for similar bridges of 

like material. 

2. The necessity of providing for an expansion of steel bridges 

equal to almost twice that of concrete bridges is questionable. 

3. In design of main supporting members, the use of the same 

temperature range for both exposed and sheltered conditions is 

questionable. 

4. There is a minimum expansion length, perhaps 200 to 250 ft, 
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below which many of the currently used supporting devices, 

especially rockers, do not experience sufficient thermal 

movement to insure continued free movement. 

A large percentage of bridges do not retain the designed 

provision for thermal movement. In many cases the bridges 

experience closure of floor expansion devices and excessive 

movement of supporting devices due to abutment movement. This 

movement is often caused by approach slab action. 

There appears to be no direct relationship between abutment 

movement and age of structure, type of approaches, or type of 

supporting or expansion devices. 

The influence of residual expansion (growth) of concrete under 

varying environmental conditions on the superstructure of 

concrete and steel bridges has apparently not received the 

attention warranted. 

The use of flexible abutments and piers tied directly to the 

superstructure has been demonstrated to be feasible and 

satisfactory for both concrete and steel deck type highway 

bridges. 

Where applicable, open armored joints have operational and 

economic advantages over the "conventional" sliding plate and 

finger joint types of floor expansion devices. 

Elastomeric bearings need not be used more extensively for 

concrete bridges than for steel bridges. 
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Dynamic Behavior of Rigid and Elastomeric Bearings 

This portion of the investigation was limited to the testing of one 

model bridge only with one set each of curved steel sole plate, 64 duro-

meter and 49 durometer bearings. It is highly probable that somewhat 

different results would be obtained from tests using a different test 

bridge, method of inducing vibration, or neoprene pads with a different 

shape factor or spring modulus. Many of the results obtained differ from 

those anticipated by theoretical considerations. 

Therefore, the following conclusions, or observations, resulting from 

the experimental portion of the research should be considered indicative, 

rather than conclusive, of the dynamic behavior of a bridge with rigid 

and elastomeric bearings subjected to a steady state forced vibration with 

harmonic excitation until more fully substantiated by additional tests 

with a variety of parameters. 

1. For a single concentrated load applied at the center of the 

bridge, both static load strains and deflections at midspan 

are less for curved steel sole plate than for neoprene bearings. 

2. The natural frequency of a given bridge superstructure is less 

for elastomeric bearings than for rigid bearings and elastomeric 

support bearings having the smallest spring modulus will have 

the lowest natural frequency. 

3. The maximum strain (and thus the stress) and deflection, total 

and net, at midspan, evaluated at the respective natural 

frequency for each type of bearing condition, is less when 

elastomeric, rather than rigid, bearings are used. In general. 



www.manaraa.com

91 

"softer" pads reduce the strain and deflection more than 

"harder" pads. 

4. For relatively small dead loads the maximum strains (and deflec

tions) at midspan of the interior and exterior girders are 

approximately equal. An increase of dead load tends to increase 

the interior/exterior girder ratio of strain and deflection. 

5. At low and high frequencies (approximately 4 to 5% and 9% to 

11% cps for this investigation) the magnitude of strain, and 

deflection, is nearly equal for elastomeric and rigid bearings. 

At intermediate frequencies below the natural frequency with 

curved steel sole plates the magnitude of strain, and deflection, 

is greater for elastomeric than rigid bearings. This is a result 

of displacement of similar shaped curves due to the lower natural 

frequency when elastomeric pads are used. 

6. Amplification factors for strain are much larger for exterior 

than interior girders. The same relationship exists for deflec

tion amplification factors, but to a lesser degree. 



www.manaraa.com

92 

COMMENTS AND RECOMMENDATIONS FOR FURTHER STUDY 

During the course of this investigation, many interesting problems 

and questions arose. Most of these are still unanswered. Some came as 

an outgrowth of the research and others were suggested by individuals. 

Many are inferred in the list of factors which influence the behavior of 

bridge supporting and expansion devices. The multiplicity of these 

factors and the dependence of the ultimate behavior of the structure upon 

almost any one of these factors make a single solution for the behavior 

of the devices investigated--considering all possible factors--a horren

dous task, if at all possible. 

For example, the function of the floor expansion device and supporting 

devices at non-fixed points is to provide for the relative movement between 

the superstructure and the substructure. The cause of excessive movement 

is not important--to the devices. The observation of excessive movement 

of supporting devices, closed expansion devices, differences in relative 

rocker movement, and cracked or spalled abutments is not, in itself, 

especially disquieting. However, the consideration of the amount of move

ment due to the superstructure or substructure and the factors which cause 

and influence the movement intrigue the imagination. Some possible 

answers can be found in the literature of prior research; some by discussion 

and correspondence with design engineers who have observed these conditions 

and their repair; and some by field observations--if a trend or pattern 

of behavior can be found. 

The problem of closure of expansion devices and excessive movement 

of supporting devices seems to be solved by the use of continuous concrete 
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and steel bridges which have no movable supporting or expansion devices. 

This raises the question as to what additional forces--and their effects--

may be induced. This is similar to additional forces caused by abutments 

which move and rest against the ends of the beams or diaphragms. 

Common to bridges with and without expansion devices is the thermal 

force and/or movement due to expansion resulting from temperature differ

entials, concrete growth, moisture, humidity, solar radiation and other 

causes. It is possible that under the influence of environmental variables 

concrete and composite steel structures could have a thermal coefficient 

different from the accepted values of either of the component materials. 

The use of elastomeric. Teflon-surfaced, and other proposed types 

of bearings introduces other factors for consideration. For example, in 

this investigation static load stresses were not the same when steel and 

elastomeric bearings were used. This is due, possibly, to differences in 

restraint of longitudinal movement by friction (steel) and shear modulus 

(elastomeric) of the respective bearings. However, the influence of 

friction would be different for static and impact loading. 

Other items relative to the use of elastomeric bearings requiring 

additional study are the relationship between the reduced natural 

frequency and vehicular induced vibrations and the possible slightly 

increased stresses--indicated in this investigation--at a given frequency. 

Some of the investigations which should provide information of value 

to bridge design engineers are the following: 

(1) A study of temperature distribution and the actual movement and 

stresses experienced by steel and concrete bridges under environmental 
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conditions. This should include a comparison of such variables as type 

of bearing, location~-such as over a highway or a stream--and prolonged 

periods of extreme high and low temperatures. 

(2) Long-term field observations of the behavior and maintenance 

required by a large number of bridges of different age and type. This 

could produce trends of behavior, but probably little information as to the 

cause or prevention. An exchange of such information by a number of 

State Highway Departments would provide useful information of interest to 

many bridge design engineers. 

(3) A review of the relative cost of the various types of devices 

used, including cost of installation. This information, with that con

cerning behavior, would be helpful to bridge design engineers in the 

selection of dependable and economical devices. ' 

(4) A study of the additional forces involved by tying the super

structure to flexible piers and abutments and those forces introduced when 

abutments move inward and rest against the beams or end diaphragms. 

(5) A study of the minimum expansion length required for sufficient 

thermal movement to assure continued free movement of such devices as 

rockers. 

(6) A study of approach slab movement and an experimental investi

gation of methods for prevention or reduction of movement and growth--

such as "keying" the slab to the approach fill. 

(7) The development of a usable method for design purposes for 

determining or assuming the coefficient of damping for bridge structures 

other than experimentation on the completed bridge. 
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(8) An investigation of the response of actual highway bridges with 

both conventional rigid and elastomeric bearings. Such an investigation 

is being conducted under the direction of Professor H. L. Kinnier, 

University of Virginia, Charlottesville, Virginia. 

(9) Further studies of dynamic load distribution, especially with 

respect to rigid and elastomeric bearings and the torsional effect of off-

center loading. 

(10) Further investigation of the correlation of behavior as deter

mined by a stationary oscillating load and moving vehicle loads on highway 

bridges. 
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I O W A  S T A T E  U N I V E R S I T Y  
O F  S C I E N C E  A N D  T E C H N O L O G Y  

A m e s ,  I o w a  

E N G I N E E R I N G  E X P E R I M E N T  S T A T I O N  

A research project involving a detailed study of bridge supporting 
and expansion devices is being conducted by the Iowa Engineering Experiment 
Station. The purpose of this project is (1) to study the factors which 
influence the requirements for and the design of supporting devices and 
floor expansion systems, (2) to review the existing devices currently in 
use, and (3) to develop, if possible, more efficient and economical support
ing and expansion devices. 

The project concerns both concrete and steel bridges of deck girder 
type construction with individual spans of 150 feet or less. A search of the 
available literature has revealed that the cost of existing bridge supporting 
and expansion devices varies over an extremely large range. However, there is 
little or no information concerning the numerous and varied types of bridge 
supporting and expansion devices currently utilized by bridge design engineers, 

the changes under consideration in the design of these devices, and the factors 
which govern the preference and selection of the type of devices to be used 
for a given design. 

Reliable information required for the project can be obtained only from 
engineers engaged in bridge design. Therefore, we are sending this letter and 
attached questionnaire to a selected group of highway commissions and consulting 
firms. 

We shall appreciate any information you can supply us and are especially 
interested in copies of bridge plans or standard design details in use by your 
organization. If you would like to have it, we shall be glad to send you a 
copy of the report on this survey when it is completed^ 

Sincerely yours, 

Jack H. Emanuel, Asst. Prof, 
Engineering Mechanics 

JHE/ph 

Enc. 
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QUESTIONNAIRE 

A Study of Supporting and Expansion Devices for Bridges with Spans up to 150 Ft. 
(Includes both steel and reinforced or prestressed concrete bridges.) 

1. (a) What are the types of supporting devices currently used by your organi
zation; e.g., rockers, simple steel sole plates, curved steel plates, 
bronze plates, elastomeric bearing pads, or other? 

(b) What are the limitations such as span lengths for each of the supporting 
devices used? 

(a) What are the types of floor expansion devices currently used by your 

organization; e.g., finger joint, joint sealer only, sliding plates, 
armor joints, elastomeric tubes, sponge fillers, or other? 

(b) What are the limitations such as span lengths for each of these expan
sion systems? 

3. (a) Has your organization utilized, or considered the use of, flexible stub 
abutments without expansion or rocker type supporting devices; e.g., 
tieing the girder directly to the abutment? 

(b) What are the limitations such as span length for type of design des
cribed above? 

4. (a) Has your organization experienced cases of movement of the abutments 
inward toward the bridge such that the abutments lean against the ends 
of the girders or end diaphragms and movement of the supporting devices 
has thus become "frozen?" 

(b) If so, could you please advise the locations of the bridges Involved? 

5o (a) Has your organization experienced cases of "freezing" due to rust or 
corrosion, of the devices currently used? 

(b) If so, could you please advise the approximate location of one or two 
of the bridges involved? 
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State Highway Departments 

Question 1. 

(a) What are the types of supporting devices currently used by your 

organization; e.g., rockers, simple steel sole plates, curved steel 

plates, bronze plates, elastomeric bearing pads, or other? 

(b) What are the limitations such as span lengths for each of the 

supporting devices used? 

Answers based on type of supporting device: 

Highway 
Department Conditions for Use 

Cast or Welded Steel Rockers. 

A Used for spans from 100 to 150 ft. 

B Used almost entirely on steel superstructures; suitable 

for any span length. 

D The limitations are determined by the loads carried. The 

following uses are shown on Standard Details of this 

Depar tment: 

Steel beam bridges--at ends of all continuous units and 

at expansion end of simple spans of 45 ft and longer. 

I-beam bridges--for abutment expansion bearing and 

interior expansion bearings. 

R.C. deck girder bridges—for abutment expansion bearing 

and interior expansion bearings. 

(Bolster used for interior fixed bearings for R.C. deck 

girder and I-beam bridges.) 
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Answers to Question 1, (Continued) 

Highway 
Department Conditions for Use 

E Used for jpans with more than 80 ft of expansion 

length and/or heavier loadings; continuous WF-beam 

bridges. 

F Used for I-beam spans from 40 to 100 ft. 

G Cast steel bearings are most commonly used on cantilever 

steel girder bridges having spans of 80 ft or more. A 

structural steel device similar to the casting is made 

as an alternate to the casting. This type of expansion 

bearing does offer some resistance to movement and is 

most commonly used in continuous steel girder bridges. 

Welded rockers and rollers are used on steel girder 

bridges wheie reduction of frictional resistance in the 

roller is desired. 

H For the following typical cases: 

1. Steel beam bridge with 2 spans, each 90 ft or 

longer. Cast steel rockers used at abutments. 

(Curved steel plates used for fixed points at 

center pier.) 

2. Steel beam bridge with 3 spans, each 85 ft or 

longer. Cast steel rockers with lubricated bronze 

The term expansion length is defined as a longitudinal segment of 
bridge one end of which is free to displace. 
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Answers to Question 1, (Continued) 

Highway 
Department Conditions for Use 

bushing for pin type bearing used at expansion 

points. (Cast steel with lubricated bronze 

bushing for pin type bearing used for fixed point 

at one pier only.) 

I No limitation on span length. 

Simple Steel Sole Plates. 

D The limitations are determined by the loads carried. 

Standard details show flat plates used for single span 

I-beam bridges less than 45 ft. 

E Simple WF-beam bridges: Used with slotted holes for 

expansion on spans to 35 ft. Capacity (of device) is 

about 50 K. 

G Used very seldom and when used are confined to short 

span secondary structures. 

Curved Steel Plates. 

C Steel beam spans under 150 ft; in general do not use 

beam spans in excess of 100 ft. 

D The limitations are determined by the loads carried. 

Standard Details show the use of curved places for fixed 

bearing at abutment for I-beam bridges, and for fixed 

end at abutment of R.C. deck girder bridges. 
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Answers to Question 1, (Continued) 

Highway 
Department Conditions for Use 

E Simple WF-beam bridges: Used with spans 35 to 80 ft. 

Continuous WF-beam bridges: Used with no more than 80 ft 

of expansion (length). 

G Used on prestressed concrete girder bridges, and steel 

girder bridges of single span and cantilever type where 

spans are generally less than 80 ft. Have been used on 

prestressed spans up to 110 ft and steel girder spans 

up to 100 ft (simple spans). 

H For the following typical cases: 

1. Continuous concrete slab bridge with 5 spans, 

each varying between 30 and 40 ft. Curved steel 

plate used for fixed points at the two center piers. 

(Curved steel plate with lubricated bronze plate 

type bearings used for expansion points at abutments 

and end piers.) 

2. Used at fixed end of prestressed concrete girders 

for span lengths between 30 and 90 ft. (Curved steel 

plate with lubricated bronze type bearings used at 

expansion ends.) 

3. Steel beam bridges with span lengths varying 

between 35 and 100 ft. Curved steel plate used at 

fixed points and expansion hinge. (Curved steel 
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Answers to Question 1, (Continued) 

Highway 
Department Conditions for Use 

plate with lubricated bronze type bearing used at 

expansion points.) One 3 span continuous welded 

steel beam bridge was fixed at one pier. One 4 

span continuous and cantilever steel beam bridge 

was fixed at center pier and abutments. 

4. Refer to Cast or Welded Steel Rockers on 

previous page, Highway Dept. H, paragraph 1. 

I Used for spans up to about 75 ft. 

Bronze Plates. 

A For spans less than 100 ft, lubricated bronze plates 

for expansion placed above curved steel plates to provide 

for rotation. 

B Lubricated bronze bearings are occasionally used where 

very little bearing height is available. 

H For the following typical cases: 

1. Refer to Curved Steel Plates on previous page, 

Highway Dept. H, paragraphs 1, 2, and 3. 

2. Concrete deck girder bridge with 3 spans varying 

between 30 and 60 ft. Flat steel plate with 

lubricated bronze plate type bearings used for 

expansion end at abutments. (Concrete keyway and 

dowels used for fixed ends at both ends of center 
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Answers to Question 1, (Continued) 

Highway 

Department Conditions for Use 

span and at piers for interior beams of end 

spans.) 

Elastomeric Bearing Pads. 

B Not used . 

C Used for all prestressed concrete girders; maximum length 

70 ft at present. 

E Neoprene used for concrete deck girder bridges with simple 

spans to 60 ft. 

F Plain neoprene pads used for prestressed concrete spans 

from 40 to 100 ft. Laminated neoprene pads have been 

used for floor-beams and simple I-beam spans. Investiga

tions have been made on use of laminated neoprene pads 

for simple and continuous I-beam spans, but no reports 

are available at this time. 

G Have been used for prestressed concrete bridges only. 

I Used for spans up to about 80 ft. 

Other. 

B A 1 X 1-in. bar with curved top and welded to the bearing 

plate is occasionally used for very light steel super

structures. The flange of the I-beara bears jdirectly 

upon the curved surface of tjie bar. 
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Answers to Question 1, (Continued) 

Highway 
Department Conditions for Use 

C Normally no bearing device used for concrete slabs and 

T-beam spans; concrete is poured directly upon the pier 

or abutment. 

D Limitations are determined by the loads carried. Standard 

Details show the following: 

Graphited asbestos bearing pads at expansion bearings for 

precast prestressed concrete bridge deck. 

Fabric bearing pads at fixed bearings for precast pre

stressed concrete bridge deck. 

Abutment curtain wall monolithic with deck slab for steel 

beam and reinforced concrete girder bridges with single 

spans under 45 ft. 

A six-in. roller for abutment expansion bearings of 

reinforced concrete slab bridges. 

E Two layers of ordinary roofing felt between super

structure and supporting concrete surface used on 

continuous concrete slabs and box girder spans up to 

about 40 ft. 

Longer spans vary with conditions but are generally 

similar to "6-in. roller bearing" (with pintles). 

F Expansion joint material or roofing felt usually used 

for concrete slab or girder spans varying from 20 to 

40 ft. 
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Answers to Question 1, (Continued) 

Highway 
Department Conditions for Use 

H For the following typical cases: 

1. Precast concrete channel bridges with span 

lengths from 18 to 30 ft have both ends set on 

masonry mortar and fixed at both ends with a steel 

dowel. 

2. Prestressed precast concrete slab with span 

lengths from 30 to 47 ft. Slab set on bituminous 

felt and fixed with a steel dowel at fixed end. 

Slab set on bituminous felt and steel dowel 

allowed to flex at expansion end. Both ends of 

some are fixed. 

3. Continuous concrete slab bridges with 3 spans 

varying between 30 and 46 ft. For fixed points at 

piers, the roadway slab and pier cap are integral. 

For expansion ends at abutments, the slab is set 

on troweled seat painted with asphalt and shear 

lug with cork used to allow for expansion. 

4. Refer to Bronze Plates on previous page. Highway 

Dept. H, paragraph 2. 

5. Concrete box girder bridge with 5 spans varying 

between 75 and 125 ft. For fixed points: at single 

column pier, pier cap and box girder were integral; 
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Answers to Question 1, (Continued) 

Highway 

Department Conditions for Use 

at other fixed points, curved steel plate type 

bearings were used. For expansion points, curved 

steel plate with lubricated bronze plate type bear

ings were used. (A simple span, cantilever, and 

suspended spans were used on this bridge.) 

6. Refer to Cast or Welded Rockers on previous 

page. Highway Dept. H, paragraph 2. 

I Fabreeka (hard)--used for Spans up to about 40 ft. 
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Question 2. 

(a) What are the types of floor expansion devices currently used by 

your organization; e.g., finger joint, joint sealer only, sliding plates, 

armored joints, elastomeric tubes, sponge fillers, or other? 

(b) What are the limitations such as span lengths for each of these 

expansion systems? 

Answers based on type of expansion device: 

Highway 
Department Conditions for Use 

Finger Joint. 

A Used for expansion lengths above 300 ft. 

B Used for indicated joint movements in excess of 3 in. 

total movement. 

C Used for longer bridges (seldom used for steel beam 

bridges) . 

D Used for L> 250 ft (for skew angle = 0 and L = length of 

structure from fixed support; limiting value of L varies 

with skew angle). 

E Used for over 250 ft of expansion (length). 

F Used where expansion exceeds 2% in. at the coldest design 

temperature. 

G Open finger joints are commonly used on primary structures 

over stream crossings (steel girder bridges only). 

Closed finger type of devices have been used where a 

waterproof device is desired. This device tends to freeze 

up and its use has been discontinued. (This is a finger 
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Answers to Question 2, (Continued) 

Highway 
Department Conditions for Use 

device with solid plate in contact with bottom surface.) 

Gap in the device is designed for the length of structure 

for which the device functions. 

H For the following typical cases: 

1. Concrete box girder bridge with 5 spans; Finger 

joint used between a cantilever and end span; length 

of expansion 67 ft. A 1-in. cork expansion joint 

used for 68 ft length of expansion at abutiueuts; 

joint over pier; and between suspended span and 

cantilever spans. 

2. Deck plate girder bridge with 3 spans; length of 

expansion 100 ft. Finger joints used over hangers 

of suspended center section. Sliding plates, used 

at abutments, slide directly on concrete of abutment. 

(Bridge fixed at piers; center section suspended; 

rockers used at abutments.) 

I No limitation on expansion length. 

Joint Sealer. 

F Currently used in construction joints and also on pan form 

structures (30 to 40 ft spans) . 

Sliding Plates. 

A Used for expansion lengths from 60 to 300 ft. 
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Answers to Question 2, (Continued) 

Highway 

Department Conditions for Use 

B Used for joints having indicated movement in both 

directions of less than 3 in. 

C Used for longer bridges (used generally for steel beam 

bridges). 

D Used for 200<L< 250 ft (for skew angle = 0 and L = length 

of structure from fixed support; limiting values of L 

vary with skew angle). 

E Used for 80 to 250 ft of expansion (length) . 

F Have used. 

G Have been used extensively on steel and prestressed 

bridges; currently using this basic device with short 

fingers on the apron and stop plates to improve the 

riding quality; gap in the device is designed for the 

length of structure for which the device functions. 

H For the following typical cases: 

1. Continuous concrete slab bridge with 5 spans. 

Sliding plate type expansion device used at abut

ments; length of expansion 98 ft. 

2. Steel beam bridge with 3 spans. Sliding plate 

type expansion device used at abutments; sliding 

plate slides directly on concrete of front face of 

abutment parapet; length of expansion 183 ft. 
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Answers to Question 2, (Continued) 

Highway 
Department Conditions for Use 

3. Steel beam bridge with 2 spans and fixed at 

center pier. Sliding plate type expansion device 

used for length of expansion of 90 ft and over. 

Plate slides directly on concrete of front face of 

abutment parapet. 

I Expansion length limitation approximately 375 ft. 

Armored Joints--Open. 

D Used for L< 200 ft (for skew angle = 0 and L = length of 

structure from fixed support; limiting value of L varies 

with skew angle). 

F Used where expansion does not exceed 2% in. at the coldest 

design temperature. 

H For typical case of 4 span continuous and cantilever steel 

beam bridge. A 1^-in. open joint with steel plates to 

protect edges of concrete roadway slab used over hinge 

connections; length of expansion 75 ft. 

Elastomeric Tubes. 

B Elastomeric tubes are being tried on some existing joints 

where the original filler was asphalt impregnated felt. 

They do not consider that any joint using bituminous felt 

will prove to be satisfactory for very long but hope that 

they may be able to maintain this type of joint with 
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Answers to Question 2, (Continued) 

Highway 

Department Conditions for Use 

elastomeric tubes and special joint sealer although they 

have no experience to date with this type. 

F Have used. 

Sponge Fillers. 

E Sponge rubber used for up to 80 ft of expansion (length) 

on high type construction. 

Other. 

A For short expansion lengths up to 60 ft, a one-in. thick

ness of joint filler sealed with hot poured rubber is 

used. 

G For concrete T-beam slab or prestressed beam bridges do 

not, at present, provide expansion devices, but provide 

a slender abutment designed such that the abutment can 

flex and take the necessary movement. Have constructed 

bridges up to about 200 ft total length, and they work 

very satisfactorily. 

E Bituminous preformed material used on the secondary system 

for up to 80 ft of expansion (length). 

G Preformed expansion joint fillers have been used for 

concrete slab bridges and are sealed with joint sealer. 

Most current design is based on continuous structures. 
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Answers to Question 2, (Continued) 

Highway 

Department Conditions for Use 

thereby eliminating expansion device in the deck except 

at bridge ends. 

H For the following typical cases: 

1. Precast concrete channels: No expansion device 

used. 

2. Prestressed precast concrete slab bridge with 3 

simple spans and length of expansion varying from 30 

to 47 ft. A 1-in. cork expansion joint was used. 

3. Continuous concrete slab bridge with 3 spans and 

length of expansion of 60 ft. Flexible stub 

abutments used. 

4. Concrete deck girder bridge with 3 simple spans. 

Expansion joint of 1-in. cork used for length of 

expansion from 30 to 60 ft. 

5. Refer to Finger Joint on previous page. Highway 

Dept. H, paragraph 1. 

6. Prestressed concrete girder bridge with 4 spans. 

No expansion device used; end of roadway slab at 

abutments extends over abutment parapet wall. 

Length of expansion 108 ft. 

7. Prestressed concrete girder bridge with 4 simple 

spans. A 1-in. cork joint used for length of 

expansion of 30 to 90 ft. 
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Answers to Question 2, (Continued) 

Highway 

Department Conditions for Use 

8. Steel beam bridge with 3 simple spans. A 1-in. 

cork joint used for length of expansion of 30 to 

70 ft. 

I Mastic joint filler--expansion length limitation 

approximately 75 ft. 

Cord J dehydrated--expansion length limitation approxi

mately 100 ft. 
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Question 3. 

(a) Has your organization utilized, or considered the use of, flexible 

stub abutments without expansion or rocker type supporting devices; tying 

the girder directly to the abutment? 

(b) What are the limitations such as span length for type of design 

described above? 

Answers ; 

Highway 

Department Conditions for Use 

A Yes. Have used for concrete structures, both cast in 

place and prestressed, up to bridge lengths of about 

100 ft. 

B Yes. Maximum length of structure constructed about 400 

ft ; spans vary from 30 to 125 ft; have been using 

continuous T-girder, box girder, reinforced concrete 

slabs and reinforced concrete voided slabs with flexible 

stub abutments without expansion devices or expansion 

joints for a number of years; the pier columns are made 

monolithic with the superstructure and made sufficiently 

flexible so that they can accommodate the expansion; 

probably have over 100 structures of this type. 

C Yes. Have used flexible abutments tied directly into the 

superstructure for nearly 15 years; numerous cases where 

this has been done for continuous slab bridges to 160 ft, 

continuous T-beam bridges to 240 ft and prestressed bridges 

with floor slabs continuous as long as 240 ft; have used 



www.manaraa.com

122 

Answers to Question 3, (Continued) 

Highway. 
Department Conditions for Use 

for I-beam bridges in a few cases, but provide slotted 

holes and sliding'plates in case the longitudinal thrust 

becomes excessive. 

D Use fixed-top type of abutments on single spans less than 

45 ft. 

E Yes. 

Continuous concrete slabs and box girders: 

Steel or concrete bearing pile integral with super

structure; has been used on a structure-400 ft long 

and greater lengths believed possible. 

Small diameter concrete columns integral with super

structure; present maximum about 150 ft from center 

of structure. 

Steel Structures: Under study with no definite con

clusions . 

F Discontinued. Have used in the past on prestressed and 

short pan form structures; have discontinued the use of 

this type of abutments in their new standards; no limita

tions due to span. 

G Yes. Have recently designed some grade separation 

structures (county roads over interstate) using flexible 

stub abutments. These structures are four span 

continuous structures, either steel or prestressed 
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Answers to Question 3, (Continued) 

Highway 
Department Conditions for Use 

concrete. This type of design is confined to square 

structures carrying low traffic volumes of approximately 

230 ft in length. 

H Yes. Used on: 

Continuous steel beam bridge with 3 spans and length of 

expansion 66 ft. 

Continuous concrete slab bridge with 3 spans and length 

of expansion 57 ft. 

Prestressed concrete slab bridge with 3 spans and length 

of expansion 55 ft. 

1 No. Have not utilized flexible stub abutments without 

allowances made for relative horizontal movement between 

superstructure and abutments. 
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Question 4. 

(a) Has your organization experienced cases of movement of the abutments 

inward toward the bridge such that the abutments lean against the ends of 

the girders or end diaphragms and movement of the supporting devices has 

thus become "frozen"? 

(b) If so, could you please advise the locations of the bridges involved? 

Answers : 

Highway 

Department Comments 

A Yes. Have experienced abutment crowding in some cases to 

the extent that the expansion joints are completely 

closed, 

B Yes. Have experienced many cases in almost every part of 

the State. 

C Yes. Have a large number of cases where the abutments have 

moved inward until they lean against the end steel girders 

and the expansion device, as a result, is completely 

closed; also have a large number of cases of steel bridges 

built with sliding plates where the plates apparently 

have never moved and have become "frozen"; "in fact, the 

failure of our expansion joints to move is what prompted 

us in the first place to start constructing bridges with

out expansion joints". 

D Yes. Have had, in the past, cases where the abutments 

moved forward, so as to block expansion; now allow an 

extra space between the abutments and beams for this 
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Answers to Question 4, (Continued) 

Highway 

Department Comments 

purpose; have also tightened up on the specifications for 

backfilling. 

E No, In general, have experienced no extensive movement of 

bridge abutments involving contact with the superstructure. 

F Yes. (Gave location of two Expressways.) 

G Have observed some structures that have been in use some 

20 or 30 years; however, no apparent damage has taken 

place. The expansion bearing plates become closed and the 

abutments apparently expand with the bridge. Newer 

structures are functioning satisfactorily with expansion 

devices. 

H Yes. All known cases have been repaired or corrected. 

I Yes. Various locations. Five abutment repairs made so 

far this year because of this condition. 
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Question 5. 

(a) Has your organization experienced cases of "freezing" due to rust or 

corrosion of the devices currently used? 

(b) If so, could you please advise the approximate location of one or two 

of the bridges involved? 

Answers : 

Highway 

Department Comments 

A No. No such cases for devices currently used; to their 

knowledge. 

B Yes. Have experienced a great deal of this on deck girder 

structures constructed during the 1930 decade when sliding 

plates were freely used; almost every simple span bridge 

constructed during this period will show at least one 

failure of this type; typical failure is fracture of ends 

of concrete deck girders at abutments and pier caps and/or 

fracture of abutment at bridge seat which probably could 

have been avoided by use of anchor rods rather than the 

short studs frequently used. 

C Yes. Have many cases where the expansion devices con

sisting of sliding plates have become "frozen" due to 

rusting or corrosion. 

D No. No records of "freezing" due to rust or corrosion of 

devices currently used; has occurred on some old structures 

with sliding plate type bearings. 
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Answers to Question 5, (Continued) 

Highway 
Department Comments 

E No. Have had no reports of "freezing" of bearing and 

expansion devices currently in use. 

F No. Maintenance on bridges is extensive and therefore 

eliminates much of this trouble. 

G Some freezing due to rust or corrosion has been 

experienced especially on older structures. Old truss 

spans require cleaning. Have not experienced too much 

difficulty with this problem. 

H Yes. All known cases have been repaired or corrected. 

I Yes. Various locations. Two repairs made so far this 

year because of this condition. 



www.manaraa.com

128 

Consulting Firms and Engineers 

Quest ion 1 .  

(a) What are the types of supporting devices currently used by your 

organization; e.g., rockers, simple steel sole plates, curved steel plates, 

bronze plates, elastomeric bearing pads, or other? 

(b) What are the limitations such as span lengths for each of the support

ing devices used? 

Answers based on type of supporting device: 

Consulting 
Firm Conditions for Use 

Cast or Welded Steel Rockers. 

K Used for maximum total movements of more than 3 in. 

L If the amount of the reaction is such as to require a 

large plate that would not distribute the load well, a 

built-up rocker or shoe is desirable; also, when the 

amount of expansion is more than about % in., and where 

the abutment or pier is rigid, a rocker is generally 

used. 

M Used for both rolled beam and concrete girder bridges 

for all span lengths practical for these types of 

structures. 

N No span limitations (expanding length). 

Simple Steel Sole Plates. 

(Apparently not used by any of the respondents.) 
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Answers to Question 1, (Continued) 

Consulting 

Firm Conditions for Use 

Curved Steel Plates. 

K Used for maximum total movement of 3 in. 

L Used for expansion of about % in. or less; also used for 

"fixed" bearings on short span bridges. 

N Used for 50 to 60 ft expanding length. 

Bronze Plates. 

L Have not used. 

N Used for 100 ft maximum expanding length. 

Elastomeric Bearing Pads. 

L Have not used. 

N Neoprene used for 60 ft maximum expanding length; have 

used only in Florida on prestressed concrete beam spans. 

Other. 

M Solid cylindrical steel rollers with top and bottom plates 

have been used for short span continuous concrete slab 

bridges. For fixed bearings usually use a bolster 

fabricated from WF section with top flange curved. 

N Rollers: no span limitations (expanding length). 
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Question 2. 

(a) What are the types of floor expansion devices currently used by your 

organization; e.g., finger joint, joint sealer only, sliding plates, 

armored joints, elastomeric tubes, sponge fillers, or other? 

(b) What are the limitations such as span lengths for each of these 

expansion systems? 

Answers based on type of expansion device; 

Consulting 

Firm Conditions for Use 

Finger Joint. 

K Used for movement in excess of 7 in. 

M Used for expansion lengths in excess of 250 ft for straight 

bridges. 

N Used when expanding length is over 350 ft. 

Joint Sealer. 

(Apparently not used by any of the respondents.) 

Sliding Plates -

K Used for 7 in. total movement. 

L Currently in use. 

M Used for expansion lengths not exceeding 250 ft for 

straight bridges; up to about 350 ft for skewed bridges. 

N Used for expanding length of 50 ft to 350 ft. 

Armored Joints--Open. 

M On shorter span bridges with paved roadway, usually 
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Answers to Question 2, (Continued) 

Consulting 
Firm Conditions for Use 

specify a 1%-in. open joint (50° F) at ends of the super

structure slab; used for length from fixed support not 

greater than 200 ft on straight bridges or up to 280 ft 

for skewed bridges. 

N Used for expanding length up to 100 ft. 

Elastomeric Tubes. 

(Apparently not used by any of the respondents.) 

Sponge Fillers. 

(Apparently not used by any of the respondents.) 

Other. 

K Bituminous expansion joint fillers used for 1 in. total 

movement. 

L A 1% -in. non-extruding joint sealer above 1% in. preformed 

expansion joint is used between bridge and approach slab 

of steel bridges with girders fixed at both abutments. 

M If approach slabs are not paved, sometimes cantilever 

the end of bridge slab over part of the abutment back-

wall with a %-in. premolded joint between bottom of 

slab and top of abutment wall. On projects for State 

Highway Commissions their standard practices and details 

are followed. 



www.manaraa.com

132 

Answers to Question 2, (Continued) 

Consulting 

Firm Conditions for Use 

N Closed joints with premolded joint filler used for 

expanding length of 50 ft or less. 
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Question 3. 

(a) Has your organization utilized, or considered the use of, flexible 

stub abutments without expansion or rocker type supporting devices; tying 

the girder directly to the abutment? 

(b) What are the limitations such as span length for type of design 

described above? 

Answers: 

Consulting 
Firm Conditions for Use 

K Yes. Total length of 180 ft. 

L Yes. Have recently designed several steel bridges with 

total lengths up to 300 ft between abutments and fixed 

the girders at both abutments; abutment piles were 

driven vertical. 

M No. 

N Yes. Have used monolithic abutments for continuous 

concrete slab bridges and continuous box girder bridges 

up to 350 ft of structure length. Have not used for 

steel structures. 
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Question 4. 

(a) Has your organization experienced cases of movement of the abutments 

inward toward the bridge such that the abutments lean against the ends of 

the girders or end diaphragms and movement of the supporting devices has 

thus become "frozen"? 

(b) If so, could you please advise the locations of the bridges involved? 

Answers : 

Consulting 

Firm Comments 

K No. Have noticed rotational movement of pile bent type 

abutments; do not know of any structures designed by this 

firm where the rotation has been of such magnitude that 

expansion of the structure has been restricted. 

L Yes. (Gave location of several bridges, but they were 

not designed by this firm.) 

M No. Not experienced to the best of their knowledge. 

N Yes. Stub abutments, on . . . Turnpike and . . 

Turnpike. Stub abutments and full-depth abutments. 

on . . . Expressway. 
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Question 5. 

(a) Has your organization experienced cases of "freezing" due to rust or 

corrosion of the devices currently used? 

(b) If so, could you please advise the approximate location of one or two 

of the bridges involved? 

Answers : 

Consulting 

Firm Comments 

K No. Corrosion resistant materials used where rust and 

corrosion might be excessive under normal maintenance. 

L Yes. Almost any older truss span will show this 

condition, particularly the simple span trusses less 

than about 300 ft. 

M No. Not experienced to the best of their knowledge. 

N No. No such cases known for devices currently being used. 
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APPENDIX B: 

TYPICAL SUPPORTING AND EXPANSION DEVICES 

AND COMBINATIONS OF DEVICES 
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APPENDIX C; 

FIELD OBSERVATIONS AND IRREGULARITIES OBSERVED 
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Table 11. Tabulation of bridges and items observed 

l| 
la Length 

(N 
Abutment! 
Stub Other 

Supporting Device 
Exp&n. Fixed 
Abut. Abut. Pier# 

Gap in Floor Expansion 
Device at Expansion 

End or Ends 
(if observed) in. 

0 0-̂  -J-I -1 1-Lj >1̂  

Approach Slab Opening 
(if observed) In. 

'"7 

1-plate 
girder, 
1-steel 

l-high 
plate 
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plate 
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(no pier) 

(no pier) 

U-ÎO 
l-high 

curved 
plate 
flat plate 

plate 
flat plate 

curved 
plate 
flat plate 

concrete ^hlgh old por
tion, flat 
plates; 
new por
tion, fa-

old por
tion, flat 
plates; 
new por-

old por
tion, flat 
plates; 
new por
tion, fa-
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flat plates flat plates flat 
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^-curved 

1-pin and 
slide 

2-curved 

6-curvcd 
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2-sliding 
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plate 

flex 
pier 

flat plates 
(no expaa, 
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1-rocker 

8-curved 
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flat 

tight) 
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1-curved 

pier, 
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sliding 
plate 

high 
plate 

(ov" 
R.R.I 

2-curved 
plate 
2-bronae 
plate 

2-curved 
plate 
Z-bronae 
plate 

sliding 
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(asphalt 
covered) 
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sliding 
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•tressed 
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concrsts 3 
continu
ous girder 

'53-'59 

17k'56 

sliding 
plate '-4 

Ida concrete high 

concrete 
box 

(with one 
column 
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Pre
formed 
expansion 
joint 
filicr 

asphaltic 
"fiber-
board" 
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board" 
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or plate 

'55-'56 1 pier 

1 pier 
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2-sliding 
plate both 

sliding 
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appro*. 
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with bolt with bolt 
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One bridge expans both ends. 

Due only to spalling of abutment backwall. 

asphalt 
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filled ar
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Joint be-
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Table II (Continued). 

^ n l |  
N». o o- S Èa 

Croup Type Sp*n« Z 
Lê t̂h Abatmiot* 

Stub Other 

Supporting Device 
Expan. Fixed 
Abut. Abut. Pier» 

Gap in Floor Expansion 
Device at Expansion 
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l-finger 
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Irregularities Observed 

* 
Group 1 --One Span Steel Bridges, 60 ft long. 

Two observed, one irregularity: Severe "squeezing" and extrusion of mastic 

expansion joint at 90° F temperature; (high abutments). 

Group 3--TWO Span Concrete Deck Girder Bridges, 68 to 80..ft long. 

Two observed, one irregularity: One abutment settled resulting in cracking 

and severe spalling of pier under flat bearing plate. Approximately 40 

years old; high abutments. 

Group 4--Three Span Steel Beam Bridges, simple spans, 120 to 130 ft long. 

Three observed, one irregularity: One pier cracked near end; one abutment 

spalled under one beam. 

Group 5--Three Span Steel Bridges, 120 to 130 ft long. 

Three observed, two irregularities: 

a. Rockers on both piers cocked opposite to direction of thermal 

movement. 

b. Rockers on both piers not in agreement; on north side the rockers 

are cocked in direction of thermal movement and on south side the 

rockers are cocked opposite to direction of thermal movement; 

inner rockers show various stages of disagreement with less 

magnitude. Expansion abutment has moved inward (toward center 

of bridge); sliding plate expansion joint is tight. 

Group numbers refer to Table 11. 
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Group 6--Three Span Steel Beam Bridges, 150 to 180 ft long. 

Seven observed, four irregularities: 

a. Both abutments moved inward (toward center of bridge); top of 

backwall of expansion abutment spalled and cracked at approach 

slab near curb. 

b. Expansion abutment moved inward and backwall spalled; sliding 

plate tight; (high fill approaches). 

c. Abutments have moved inward; sliding plate tight; (on gravel 

road) . 

d. Backwall of abutment cracked inward; no visible movement of 

expansion end for some time. 

Group 8--Three Span Plate Girder and Steel Beam Bridges, 200 to 300 ft long. 

Nine observed, five irregularities: 

a. Very severe spalling of backwall of expansion abutment and rein

forcing steel exposed; sliding plate tight (Fig. 19-a) . 

b. Both abutments moved inward; fixed abutment undercut at one end, 

piling exposed and abutment cracked at two places; sliding 

plate tight. 

c. Sliding plate appears to have "frozen" and pulled backwall of 

abutment inward; sliding plate tight and abutment backwall tight 

against diaphragm. 

d. Fixed abutment cracked and spalled at three of the four masonry 

bearing plates (1-in. square bars under bearing plates); no 

apparent movement of expansion support for some time; sliding 

plate tight (Fig. 19-b). 
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e. Both abutments moved inward; expansion slot in curved plate 

tight against bolts at each abutment; sliding plate tight and 

has broken loose from approach slab at one point. 

Group 9—Three Span Steel Beam Bridge, 95 ft long. 

One observed, one irregularity: Both high abutments cracked diagonally 

outward (away from center of bridge) at junction of backwall and bearing 

seat; stalactites up to 1-3/4 in. long at fixed abutment and other inter

mittent points along the north side (Fig. 20-a). 

Group 10--Three Span Cantilever Type Steel Bridges, 110 to 140 ft long. 

Four observed, four irregularities: 

a. Backwall of expansion abutment moved inward and spalled; fixed 

abutment spalled; very little, if any, movement of rockers; 

(bridge and road blacktop over concrete). 

b. Backwall of abutment badly spalled; sliding plate would be tight 

except for spalling of backwall and fact that approximately 1% 

in. of sliding plate on one side of bridge has been cut away; 

(high fill approaches). 

Cr Expansion abutment moved inward and is badly spalled; however, 

there is over 1-3/4 in. between backwall and approach slab; slid

ing plate tight; fixed abutment appears to have moved (Fig. 20-b). 

d. Spalling at one end of expansion abutment; sliding plate tight. 

Group 12 — Three Span Concrete Continuous Girder Bridges, 155 and 185 ft 

long. 

Four observed, four irregularities: 
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Note: These are two sets of twin bridges. The old bridges were 

built in 1953 and the new twin bridges were built in 1959. The 

grading is completed for the new twin road, but paving has not been 

placed. 

a. Expansion abutment moved inward; sliding plate tight; (old 

twin). 

b. Expansion abutment moved outward; 1% in. of shop paint on slid

ing plate exposed; (new twin). 

c. Both abutments moved inward; sliding plate tight; rockers on 

pier next to fixed end cocked approximately three times as much 

as other pier; (old twin). 

d. Expansion abutment moved outward; 3/4 in. of shop paint exposed 

on sliding plate; (new twin). 

Group 15--Three Span Steel Beam or Plate Girder Bridges, Approximately 120 

to 350 ft long. 

Eight observed, six irregularities: 

a. Some evidence of abutment shifting. 

b. Rockers practically vertical. 

c. Rocker on pier adjacent to fixed pier cocked opposite to direc

tion of thermal movement. 

d. One abutment tilted inward (this bridge observed by a bridge 

design engineer to have no apparent movement winter or summer). 

e. Rockers at abutment adjacent to fixed pier practically vertical 

(expansion strip approximately % in. wide; crack in asphalt 

approach) . 
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f. Rockers at abutment cocked opposite to direction of thermal 

movement. Some opening of expansion strip to a total of 

approximately 3/4 in. 

Group 19--Four Span Combination Steel Beam and Plate Girder Bridges, 176 

ft long. 

Two observed, 1 irregularity: Concrete diaphragms tight against abutment 

backwall; at one abutment this appears to be due to approach slab; (bridge 

originally built in 1930 and widened in 1956 when concrete highway was 

widened; now covered with asphalt). 

Group 23--Four Span Steel Beam Bridge, approximately 240 ft long. 

One observed, one irregularity: Expansion device for longer length of 

expansion closed and abutment cracked. Rocker at other abutment cocked 

opposite to direction of thermal movement. Entire b::idge has apparently 

shifted. 

Group 25--Five Span Steel Beam Bridge, simple spans, 132 ft long. 

One observed, one irregularity: Number four pier moved inward; crack at 

top of number 3 pier; (high approach fill). 

Group 27--Five Span Plate Girder Bridges, less than 575 ft long. 

l\jo observed, one irregularity: Abutmènt rockers cocked excess amount in 

proportion to intermediate rockers (apparently abutments have moved)» 

Group 28--Five bpaa Combination Concrete Box Girder and Concrete Girder 

Bridge, 136 ft long. 

One observed, one irregularity: Expansion strip severely extruded from 
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sides at junctions of girder and box girder; cracking of girders over 

piers; (girders are recessed to receive box girder) (Fig. 21-a). 

Group 29--Five Span Prestressed Concrete Bridges, simple spans, 337 ft long. 

Two observed, one irregularity: One abutment rotated outward and moved 

inward. 

Group 32— Six Span Steel Beam Bridges with Cantilevered End Spans, approxi

mately 330 ft long. 

Two observed, one irregularity: These are twin bridges on an Interstate 

Highway. Rockers on one bridge at pier adjacent to abutment not in agree

ment; on north side the rocker is cocked opposite to direction of thermal 

movement and on south side the rocker is cocked in direction of thermal 

movement. Also, at the opposite end of the bridges the rockers at the 

piers adjacent to the abutment do not show the same relative movement of 

the two bridges. 

Group 33—Six and Seven Span Combination Steel Beam and Plate Girder 

Bridges 275 and 332 ft long. 

Two observed, two irregularities: 

a. Spalling of concrete at expansion end of plate girder. Rockers 

under plate girder not in agreement; rockers on south side 

cocked in direction of thermal expansion; rockers on north side 

cocked opposite to direction of thermal movement. Approach 

slabs "all cracked up". 

b. Spalling of concrete at ends of plate girder; cracking of raised 

beam seat on piers at junction of beams and plate girders 

(Fig. 21-b). 
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Group 36--Steel Viaduct, 4559 ft long (maximum span 362 ft). 

One observed, one irregularity: Several instances observed of rocker move

ment opposite to direction of thermal movement. In some instances this 

occurred over a range of 4 adjacent piers. 
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If 

(a) Group 8, bridge (a) 

"L sT-
K k A 

(b) Group 8, bridge (d) 

Fig. 19. Typical irregularities observed 
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(a) Group 9 ,  bridge (a) 

(b) Group 10, bridge (c) 

Fig. 20. Typical irregularities observed 
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(a) Group 28, bridge (a) 

(b) Group 33, bridge (b) 

Fig. 21. Typical irregularities observed 
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APPENDIX D: 

TYPICAL GRAPHS OF REDUCED DATA FROM 

EXPERIMENTAL INVESTIGATION 
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Fig. 24. Computer plot of strain-frequency relationship for beam C, 64 
durometer neoprene pads, oscillator with concrete blocks, 
W = 3.48 lb, e = 4.51 in. 
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Fig. 25. Computer plot of strain amplification factor-frequency relationship 
for beam A, curved steel sole plates, oscillator only, W = 3.48 lb, 
e = 4.51 in. 
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Fig. 26, Computer plot of deflection-frequency relationship for beam 3-1, 
64 durometer neoprene pads, oscLllator with concrete blocks, 
W = 3.48 lb, e = 4.51 in. 
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Fig. 27. Computer plot of deflection amplification factor-frequency relationship 
for beam 3-1, 64 durometer neoprene pads, oscillator with concrete 
blocks, W = 3.48 lb, e = 4.51 in. 



www.manaraa.com

a  

CO , 

CD I 

U^J 

- ° i 

<] 

a 
NI 

o 

o. 

4-0 

<r> 
o 

+ + 
+ + 
+ 

4#=# 

- a  
ÏÏ 
fi-G 

gg 
T f 

a - n  1 0 - 0  

Fig. 28. 

7  - D  ,3-0 
FREQUENCY (cps) 

Computer plot of deflection amplification factor-frequency 
relationship for north end of beam 3-1, 64 durometer neoprene 
pads, oscillator with concrete blocks, W = 3.48 lb, e = 4.51 in. 

11-0 



www.manaraa.com

DRIVING FORCE (lb) 
200 ICO 300 

ISO 
49 durometer 

I 
o 
I—I 

Steel 

64 durometer 

.49 durometer 
c 
•H 

a  
• H 

g 
M 

S 
CO 

40 

FREQUENCY (cps) 

Fig. 29. Strain-frequency curves for beam A, oscillator only, W = 3.48 lb, e = 4.51 in. 
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Fig. 30. Strain-frequency curves for beam C, oscillator only, W = 3.48 lb, e = 4.51 in. 
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Fig. 31. Partial strain-frequency curves for beam A, oscillator 
only, W = 3.48 lb, e = 4.51 in. 
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Fig. 32. Partial strain-frequency curves for beam C, oscillator 
only, W = 3.48 lb, e =4.51 in. 
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Fig, 33. Strain amplification factor-frequency curves for beam A, oscillator only, W = 3.48 lb. 
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Fig. 34. Strain amplification factor-frequency curves for beam C, oscillator only, W = 3.48 lb. 
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Fig. 35. Partial strain amplification factor-frequency curves 
for beam A, oscillator only, W = 3.48 lb, e = 4.51 in. 



www.manaraa.com

168 

DRIVING FORCE (lb) 
100 200 

Steel 

64 durometer 

49 durometer 

FREQUENCY (cps) 

Fig. 36. Partial strain amplification factor-frequency curves 
for beam C, oscillator only, W = 3.48 lb, e = 4.51 in. 
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Fig. 37. Strain-frequency curves for beam A, oscillator with concrete blocks, W = 0.82 lb, 
e = 7.01 in. 
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Strain-frequency curves for beam A, oscillator with concrete blocks, 

W = 3.48 Ibj e = 3.26 in. 
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Fig. 39. Strain-frequency curves for beam A, oscillator with concrete blocks, W = 3.48 lb. 
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Fig. 40. Strain-frequency curves for beam C, oscillator with concrete blocks, W = 0.82 lb, 
e = 7.01 in. 



www.manaraa.com

DRIVING FORCE (lb) 
ISO 300 350 200 250 100 50 

Stee L 

durometer 

49 durometer 

o 

X 120 

M 

40 

FREQUENCY (cps) 
^ig. 41. Strain-frequency curves for beam C, oscillator with concrete blocks, 

W = 3.48 lb, e = 3.26 in. 
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Fig. 42. Strain-frequency curves for beam C, oscillator with concrete blocks, W = 3.48 lb, 
e = 4.51 in. 
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Fig. 43, Strain amplification factor-frequency curves for beam A, oscillator with concrete 
blocks, W = 0.82 lb, e = 7.01 in. 



www.manaraa.com

DRIVING FORCE (lb) 
400 

Stee 1 

64 durometer 

49 durometer 

49 durometer 

FREQUENCY (cps) 

Fig. 44. Strain amplification factor-frequency curves for beam A, oscillator with concrete 
blocks, W = 3.48 lb, e = 4.51 in. 
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Fig. 45. Strain amplification factor-frequency curves for beam C, oscillator with concrete • 

blocks, W = 0.82 lb, e = 7.01 in. 
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Fig. 46. Strain amplification factor-frequency curves for beam C, oscillator with concrete 
blocks, W = 3.48 lb, e = 4.51 in. 
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Fig. 47, Deflection-frequency curves for beam 1-1, oscillator only, W = 3.48 lb, e = 4.51 in. 
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Fig. 48. Deflection-frequency curves for beam 3-1, oscillator only, W = 3.48 lb, e - 4=51 i 
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Fig. 49o Deflection amplification factor-frequency curves for beam 1-1, oscillator only, 

W = 3.48 lb, e = 4.51 in. 
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Fig. 50. Deflection amplification factor-frequency curves for beam 3-1, oscillator only, 
W = 3.48 lb, e = 4.51 in. 
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Deflection amplification factor-frequency curves for north end of beam 1-1, oscillator 
only, W = 3.48 lb, e =4.51 in. 
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52. Deflection amplification factor-frequency curves for north end of beam 3-1, oscillator 
only, W = 3.48 lb, e = 4.51 in. 
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Fig. 53. Deflection amplification factor-frequency curves for south end of beam 1-1, oscillator 

only, W = 3.48 lb, e = 4.51 in. 
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Fig. 54. Deflection amplification factor-frequency curves for south end of beam 3-1, oscillator 
only, W = 3.48 lb, e = 4.51 in,, 
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Deflection-frequency curves for beam 1-1, oscillator with concrete blocks, W = 0.82 lb, 
e = 7.01 in. 
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Deflection-frequency curves for beam 1-1, oscillator with concrete blocks, W = 3.48 lb, 
e = 3.26 in. 
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Fig. 57. Deflection-frequency curves for beam 1-1, oscillator with concrete blocks, W = 3.48 lb, 
e = 4.51 in. 
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Fig. 58. Deflection-frequency curves for beam 3-1, oscillator with concrete blocks, W = 0.32 lb. 
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Fig, 59. Deflection-frequency curves for beam 3-1, oscillator with concrete blocks, W = 3.48 lb, 
e = 3.26 in. 
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Fig. 61. Deflection amplification factor-frequency curves for beam 1-1, oscillator with concrete 
blocks, W = 0.82 lb, e = 7.01 in. 



www.manaraa.com

DRIVING FORCE (lb) 
500 200 400 300 

Steel 

64 durometer 
40 

9 durometer 

30 

o 
<] 

FREQUENCY (cps) 
Figo 62. Deflection amplification factor-frequency curves for beam 1-1, oscillator with concrete 

blocks, W = 3.48 lb, e = 4.51 in. 
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Fig, 63o Deflection amplification factor-frequency curves for beam 3-1, oscillator with concrete 

blocks, W = 0.82 lb, e = 7.01 in. 
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Figo 64, Deflection amplification factor-frequency.curves for beam 3-1, oscillator wxth concrete 
blocks, W = 3.48 lb, e = 4.51 in. 
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Fig. 65 « Deflection amplification factor-frequency curves for north end of beam 1-1, oscillator 
with concrete blocks, W = 0.32 lb, e = 7.01 in. 
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Fig. 66. Deflection amplification factor-frequency curves for north end of beam 1-1, oscillator 
with concrete blocks, \J = 3.48 lb, e = 4.51 in. 
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Fig. 67. Deflection amplification factor-frequency curves for north end of beam 3-1, oscillator 
with concrete blocks, W = 0.82 lb, e = 7.01 in. 
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Deflection amplification factor-frequency curves for north end of beam 3-1, oscillator 
with concrete blocks, W = 3.48 lb, e = 4.51 in. 
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Fig. 69. Deflection amplification factor-frequency curves for south end of beam 1-1, oscillator 

with concrete blocks, W = 3.48 lb, e = 4.51 in. 
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Fig. 70. Deflection amplification factor-frequency curves for south end of beam 3-1, oscillator 
with concrete blocks, W = 3.48 lb, e = 4.51 in. 
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